#!/usr/bin/env python # -*- coding: utf-8 -*- """ This module can be used to scan Mini-Lycacodes (C) 2022 Louis Heredero louis.heredero@edu.vs.ch """ import cv2 import numpy as np from math import sqrt import hamming DB_WIN = False TOL_CNT_DIST = 20 def center(c): M = cv2.moments(c) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) return (cX, cY) return (None, None) def dist(p1, p2): return sqrt((p2[0]-p1[0])**2 + (p2[1]-p1[1])**2) def is_symbol(i, cnts, hrcy): c1 = cnts[i] h1 = hrcy[0][i] cX1, cY1 = center(c1) if len(c1) != 4: return False if cX1 is None: return False if h1[2] == -1: return False i2 = h1[2] c2 = cnts[i2] h2 = hrcy[0][i2] cX2, cY2 = center(c2) if cX2 is None: return False if len(c2) != 8: return False if abs(dist((cX1, cY1), (cX2, cY2))) > TOL_CNT_DIST: return False return True def decode(img): #grey = img[:,:,2] grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #grey = cv2.GaussianBlur(grey, (5,5), 0) #if DB_WIN: cv2.imshow("grey", grey) #bw = cv2.threshold(grey, np.mean(grey), 255, cv2.THRESH_BINARY)[1] bw = cv2.threshold(grey, 127, 255, cv2.THRESH_BINARY)[1] #bw = cv2.adaptiveThreshold(grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 0) #bw = cv2.threshold(grey, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1] if DB_WIN: cv2.imshow("bw", bw) #laplacian = cv2.Laplacian(bw, cv2.CV_8U, 15) #cv2.imshow("laplacian", laplacian) contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) if DB_WIN: img2 = img.copy() cv2.drawContours(img2, contours, -1, (0,255,0), 1) candidates = [] contours = list(contours) for i, cnt in enumerate(contours): peri = cv2.arcLength(cnt, True) contours[i] = cv2.approxPolyDP(cnt, 0.04 * peri, True) for i in range(len(contours)): if is_symbol(i, contours, hierarchy): candidates.append(i) if DB_WIN: for i in candidates: cv2.drawContours(img2, contours, i, (0,0,255), 1) cv2.drawContours(img2, contours, hierarchy[0][i][2], (0,0,255), 1) cv2.imshow("contours", img2) if DB_WIN: img3 = img.copy() cv2.drawContours(img3, contours, -1, (0,0,255), 1) cv2.imshow("contours-all", img3) if len(candidates) == 0: return for i in candidates: i = candidates[0] j = hierarchy[0][i][2] cnt1, cnt2 = contours[i][::-1], contours[j] from_ = [ cnt1[0], cnt1[1], cnt1[2], cnt1[3] ] to = [ (0,0), (320,0), (320,320), (0,320) ] M = cv2.getPerspectiveTransform(np.array(from_, dtype="float32"), np.array(to, dtype="float32")) #_ = cv2.dilate(bw, (11,11)) #warped = cv2.warpPerspective(_, M, (320,320)) warped = cv2.warpPerspective(bw, M, (320,320)) if DB_WIN: cv2.imshow("warped", warped) s = 320/10 matrix = np.zeros([9, 9])-1 matrix[4:5, 0:] = 0 matrix[0:, 4:5] = 0 matrix[1:2, 3:6] = 0 matrix[3:6, 1:2] = 0 matrix[-2:-1, -6:-3] = 0 matrix[-6:-3, -2:-1] = 0 dots = warped.copy() dots = cv2.cvtColor(dots, cv2.COLOR_GRAY2BGR) for y in range(9): cv2.line(dots, (0, int(s/2+(y+1)*s)), (320, int(s/2+(y+1)*s)), (0,255,0), 1) cv2.line(dots, (int(s/2+(y+1)*s), 0), (int(s/2+(y+1)*s), 320), (0,255,0), 1) for x in range(9): if matrix[y, x] == 0: X, Y = (x+0.5)*s, (y+0.5)*s val = np.mean(warped[int(Y+s/2)-1:int(Y+s/2)+2, int(X+s/2)-1:int(X+s/2)+2]) matrix[y, x] = int(round(val/255)) cv2.circle(dots, (int(Y+s/2), int(X+s/2)), 2, (0,0,255), 1) OFFSETS = [(0,-1),(1,0),(0,1),(-1,0)] I = None for i in range(4): dx, dy = OFFSETS[i] X, Y = 320/2+dx*s/3, 320/2+dy*s/3 cv2.circle(dots, (int(Y), int(X)), 2, (0,255,255), 1) if np.mean(warped[int(Y)-1:int(Y)+2, int(X)-1:int(X)+2]) > 127: I = i if I is None: continue matrix = np.rot90(matrix, I) dx, dy = [(1,1), (-1, 1), (-1,-1), (1,-1)][I] X, Y = 320/2+dx*s/3, 320/2+dy*s/3 if np.mean(warped[int(Y)-1:int(Y)+2, int(X)-1:int(X)+2]) > 127: matrix = np.fliplr(matrix) if DB_WIN: cv2.imshow("dots", dots) v = _decode(matrix) if not v is None: return v return None #return _decode(matrix) def _decode(matrix): matrix[4:5, 4:5] = -1 if DB_WIN: img = ((matrix+2)%3)/2*255 cv2.namedWindow("matrix", cv2.WINDOW_NORMAL) cv2.imshow("matrix", np.array(img, dtype="uint8")) bits = [] for y in range(9): for x in range(9): if matrix[y, x] != -1: bits.append(int(matrix[y,x])) for i in range(4): if sum(bits[i*6:i*6+6])%2: return data = "".join(list(map(str, bits))) id_ = int(data[0:5]+data[6:11]+data[12:17]+data[18:23],2) return id_ if __name__ == "__main__": np.set_printoptions(linewidth=200) cam = cv2.VideoCapture(0) while True: ret, img = cam.read() data = decode(img) if not data is None: print(data) cv2.imshow("src", img) cv2.waitKey(10)