
Barcodes and QR-Codes
Examples of error detection and correction

Louis Heredero
4D-5D

Accompanying teacher: Daniel Erspamer

Maturity work 2022-2023

Lycée-Collège de l’Abbaye

1890 St-Maurice

Abstract

This work focuses on the creation of barcodes and QR-Codes. It describes and explains the
different data encodings and algorithms which make such technologies possible. Following
the introduction, the second part is about Code-39 and EANbarcodes, and the third aboutQR-
Codes. Then, the fourth chapter presents in more details some methods for error detection
and correction. Thefinal section introduces a new custom typeof code named Lycacodewhich
relies upon some aspects seen in the previous three chapters. Additionally, many parts are
implemented in Python like the generation of QR-Codes and barcodes for example. These
can either be found in the appendices or in the associated GitHub repository1.

1https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/tree/main/python

https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/tree/main/python

Contents

1 Introduction 7

2 Barcodes 8

2.1 Origin . 8

2.2 How it works . 9

2.2.1 Code-39 . 9

2.2.2 EAN . 11

2.3 Application in Python . 15

2.3.1 Code-39 . 15

2.3.2 EAN-8 . 16

2.3.3 EAN-13 . 18

3 QR-Codes 20

3.1 Origin . 20

3.2 How it works . 22

3.2.1 Data type . 22

3.2.2 Version . 22

3.2.3 Character count indicator . 22

3.2.4 Data encoding . 23

3.2.5 Error correction . 25

3.2.6 Interleaving . 26

3.2.7 Separators and finder patterns . 27

3.2.8 Alignment patterns . 27

3.2.9 Timing pattern . 28

3.2.10 Reserved area . 28

3.2.11 Data placement . 29

3.2.12 Masking . 31

1

CONTENTS CONTENTS

3.2.13 Format information . 33

3.2.14 Version information . 35

3.3 Application in Python . 36

3.3.1 Python features . 36

3.3.2 Precomputed data . 36

3.3.3 Data placement . 37

3.3.4 Mask evaluation . 39

4 Error detection and correction 40

4.1 Hamming Codes . 40

4.2 Reed-Solomon algorithm . 43

4.2.1 Error detection . 43

4.2.2 Binary to polynomials . 44

4.2.3 Galois Fields . 44

4.2.4 Generating error correction . 45

4.2.5 Detecting and correcting errors . 47

5 Custom code 49

5.1 Encoding . 50

5.1.1 Person - mode 0 . 50

5.1.2 Location - mode 1 . 51

5.1.3 Link - mode 2 . 52

5.1.4 Text - mode 3 . 52

5.2 Error correction . 52

5.3 Example . 52

5.3.1 Data encoding . 53

5.3.2 Hamming codes . 54

5.3.3 Laying out data . 55

5.3.4 Mask . 55

6 Conclusion 59

7 Personal review 60

Bibliography 61

A Python code base display module 63

Louis Heredero 5D 2/81 September 2022

CONTENTS CONTENTS

B Code 39 python implementation 65

C EAN python implementation 67

D QR-Code tables 70

Louis Heredero 5D 3/81 September 2022

List of Figures

2.1 Code-39 example (”*CODE-39*”) . 10

2.2 EAN-8 example (”84273727”) . 13

2.3 EAN-13 example (”9782940621057”) . 14

3.1 QR-Code example: separators and finder patterns 27

3.2 QR-Code example: timing patterns . 28

3.3 QR-Code example: reserved areas . 29

3.4 QR-Code byte placement . 30

3.5 QR-Code example: data placement . 30

3.6 QR-Code masks . 31

3.7 QR-Code example: mask evaluation . 33

3.8 QR-Code format information string layout . 34

3.9 QR-Code example: format information . 35

5.1 Lycacode: trefoil cross and squares . 49

5.2 Lycacode layout . 55

5.3 Lycacode masks . 56

5.4 Lycacode example: masked matrix . 57

5.5 Lycacode example: final code . 57

5.6 Lycacode frame dimensions . 58

4

List of Tables

2.1 Code-39 characters . 9

2.2 Code-39 for ”*CODE-39*” . 10

2.3 Luhn Formula . 11

2.4 EAN elements . 12

2.5 EAN-8 structure . 12

2.6 Luhn Formula (EAN-8 example) . 12

2.7 EAN-8 example elements . 13

2.8 EAN-13 structure . 13

2.9 EAN-13 1st digit patterns . 13

2.10 Luhn Formula (EAN-13 example) . 14

2.11 EAN-13 example elements . 14

2.12 Python Luhn formula example . 16

3.1 Maximum amount of data in a QR-Code [4] . 21

3.2 Bit length of character count indicator . 23

3.3 QR-Code error correction level indicator . 34

3.4 QR-Code data placement algorithm . 39

4.1 Hamming code structure . 41

4.2 Hamming code example . 42

4.3 Hamming code example decoding . 42

4.4 Error detection: raw message . 43

4.5 Error detection: bytes table parity . 44

5.1 Lycacode: person mode - values . 50

5.2 Lycacode: location mode - sections . 51

5.3 Lycacode: example values . 53

5

LIST OF TABLES LIST OF TABLES

5.4 Lycacode: example hamming codes . 54

D.1 List of alphanumerical characters . 70

D.2 Version capacities . 71

D.3 Error correction characteristics . 75

D.4 Alignment pattern locations . 80

Louis Heredero 5D 6/81 September 2022

Chapter 1

Introduction

Computers and microprocessors are certainly the defining innovations of the end of the XXth

and beginning of the XXIst centuries. Invented to perform tasks faster and more reliably than
humans, they truly have surpassed our mental capacities in many areas. Although they over-
come a great number of our shortcomings, especially in terms of speed, they are not infallible.
While many computer related bugs can be tracked down to a human error, some are inher-
ent to the physical infrastructure of our technologies. One major material limitation is the
network connecting computers to each other. For example, WiFi and mobile data use radio
transmissions which are not perfectly reliable. Similarly, space communication implies a lot of
interferences due to the atmosphere, space debris and all sorts of radiations. Invalid datamay
also come fromexternal sensors, would that be because they aremalfunctioning or simply not
able to correctly interpret there inputs.

As such, engineers andprogrammers have todevisemethods to check that thedata received is
unaltered and provide a way of recovering the original information, or at least guess it. These
methods are most useful in fields where data is, or was, manually input. As the saying goes,
to err is human, and machines help us correct these errors. Of course, these concerns are not
new. Indeed, Claude Shannon had already started taking an interest in information theory in
1948[6]. This scientific field which studies the characteristics and behaviors of information
led to many technological improvements and fundamental theories, especially in computer
science.

Barcodes andQR-Codes are two instances of the consequences anduse of information theory.
Their main benefit is to allow reliable identification of objects by computers. Prior to these
inventions, it was the task of humans to manually tell machines what an object was, for exam-
ple in supermarkets or factories. Now, a simple camera can quickly recognize items, without
the use of artificial intelligence, which requires substantially higher computing capacity. Addi-
tionally, their simple designsmake them very easy and efficient to implement, even on limited
hardware.

7

Chapter 2

Barcodes

2.1 Origin

The patent for the first barcode[13] was filed slightlymore than 70 years ago, in 1949, by then
Drexel University students Norman J. Woodland and Bernard Silver. Officially established in
1952, this patent described the first barcode, a reading device and a circular design. However,
success did not strike immediately, mainly because of the impractical and limited resources
of the time. Its first use was on trains, as an identification system (KarTrak[10]). It was soon
abandonned however because of readability and maintenance problems.

A few years later, in the 1970s, IBM, which now counted Mr. Woodland as an associate, had
developed the linear UPC barcode. The Universal Product Code is still in use today, with some
modifications and standardizations. It was and is used in stores to identify groceries. This kind
of tagging allowed for shorterwaits at registerswhen checking out and greatly influenced the
capitalist society we live in nowadays. As well as improving time efficiency, it also reduced
the number of human errors which could happen when manually entering the prices of items
bought by customers.

Since then, many other types of barcodes have been created for more specialized purposes,
like postal mail, warehouse inventories, libraries or medicines. The main advantage of bar-
codes is that they can be read very quickly with a single laser scan. The first barcodes didn’t
even need a computer and could be decodedwith only relatively simple electronic circuits [13,
p.3].

In 1974, the GS1 was founded. This international group is responsible for managing encoding
standards in the field of logistics and sale of goods.

8

CHAPTER 2. BARCODES 2.2. HOW IT WORKS

2.2 How it works

In barcodes, black and white stripes encode data visually. For certain types of codes, they
represent 1s and 0s, while for other types such as Code-39, it is the width of the stripes which
determines the value. The following sections will explain more thoroughly some of the most
used types of barcodes.

2.2.1 Code-39

First of all, there is Code-39, one of the simplest type of barcode. It can encode 43 different
alphanumerical characters plus the special ’*’ delimiter. Each character is assigned a particular
group of 9 bits, 3 of which are 1s, hence the name. Table 2.1 lists all encodable characters and
their respective codes.

Char Code Char Code Char Code

A 100001001 P 001010010 4 000110001

B 001001001 Q 000000111 5 100110000

C 101001000 R 100000110 6 001110000

D 000011001 S 001000110 7 000100101

E 100011000 T 000010110 8 100100100

F 001011000 U 110000001 9 001100100

G 000001101 V 011000001 space 011000100

H 100001100 W 111000000 - 010000101

I 001001100 X 010010001 $ 010101000

J 000011100 Y 110010000 % 000101010

K 100000011 Z 011010000 . 110000100

L 001000011 0 000110100 / 010100010

M 101000010 1 100100001 + 010001010

N 000010011 2 001100001 * 010010100

O 100010010 3 101100000

Table 2.1: Code-39 characters

To create a Code-39 barcode, we just have to take the codes corresponding to each character
and join themend to end, adding a 0 in between each group. Finally, we add the ’*’ character at
both ends (also spaced by a 0). It is a delimiter and should always be present at the beginning

Louis Heredero 5D 9/81 September 2022

CHAPTER 2. BARCODES 2.2. HOW IT WORKS

and end of the code, to signal scanners that it is a Code-39 barcode, as well as providing a
reference for the normal bar width.

Ones representwide bars and zeros thin bars1. Black andwhite stripes alternate, startingwith
black.

Let’s encode the string ”CODE-39”

Char Code

* 010010100

C 101001000

O 100010010

D 000011001

E 100011000

- 010000101

3 101100000

9 001100100

* 010010100

Table 2.2: Code-39 for ”*CODE-39*”

For example, the first delimiter is encoded as:

0 1 0 0 1 0 1 0 0

The entire barcode would look like figure 2.1

Figure 2.1: Code-39 example (”*CODE-39*”)

1The ratio wide/thin must be comprised between 2:1 and 3:1 [5]

Louis Heredero 5D 10/81 September 2022

CHAPTER 2. BARCODES 2.2. HOW IT WORKS

Code-39 doesn’t provide any error detectionmechanism. If a character is read as another char-
acter, the reading device won’t know that it made a mistake. Additionally, it is not the most
compact type of encoding, but it can easily be used for small amounts of data, for example to
encode the identification number on students’ absence booklet or sheet.

2.2.2 EAN

Another barcode type is the EAN2 standard. It is used for product identification and can be
found on anything bought from a store. It exists in two main formats: EAN-8 and EAN-13,
encoding respectively 7 and 12 digits. EAN codes use what is called a check digit to detect
erroneous readings. This digit is the result of the Luhn Formula. Say we want to encode the
number 978294062105. To find the checksum digit, we have to multiply each digit by the alter-
nating factors 1 and 3, and add all the products.

9 7 8 2 9 4 0 6 2 1 0 5

x 1 3 1 3 1 3 1 3 1 3 1 3

+ 9 21 8 6 9 12 0 18 2 3 0 15 = 103

Table 2.3: Luhn Formula

We then take themodulo ten, which is the sameas sayingwekeep the unit’s digit, and subtract
it from 10. In our example, 103 ≡ 3 (mod 10) so the checksum is 10 − 3 = 7. If we get 10 we
change it to 0 to keep a single digit.

This is now the 13th digit of our code. For an EAN-8 code, the process is the same with the
factors 1 and 3 inverted, meaning the first digit is multiplied by 3, the second by 1, etc.

The barcode itself is built out of a series of ”elements”. Each element encodes a character, as
described by table 2.4. Ones are black stripes and zeros are white.

There are 3 types of elements: A, B and C. Type C is obtained by swapping 1s and 0s from type
A. Type B is obtained by flipping type C from left to right.

This structure makes it easy to find the type of a certain element. Bs and Cs have an even
number of 1s, while As have an odd number. Additionally, As an Bs start with 0 and end with
1, whereas Cs are the opposite.

In this way, if the code is read in the wrong way, C elements will appear as Bs, and A elements
will be invalid because no element starts with a 1 and has an odd number of 1s. Similarly, if
the barcode is printed with inverted colors (white on black), A elements will be read as Cs, and
B elements will be invalid, since no element starts with a 1 and has an odd number of 1s.

EAN barcodes are thus very practical since they can be scanned in any orientation and support
color inversion.

2European Article Numbering

Louis Heredero 5D 11/81 September 2022

CHAPTER 2. BARCODES 2.2. HOW IT WORKS

Char. A B C

0 0001101 0100111 1110010

1 0011001 0110011 1100110

2 0010011 0110011 1101100

3 0111101 0110011 1000010

4 0100011 0110011 1011100

5 0110001 0110011 1001110

6 0101111 0110011 1010000

7 0111011 0110011 1000100

8 0110111 0110011 1001000

9 0001011 0110011 1110100

Table 2.4: EAN elements

EAN-8

An EAN-8 barcode has the following structure:

left A A A A mid C C C C right

Table 2.5: EAN-8 structure

In table 2.5, ”left” and ”right” are the end delimiters ”101”. ”mid” is the center delimiter
”01010”. To illustrate, let’s encode the value ”8427372”.

1. Calculate the checksum digit:

8 4 2 7 3 7 2

x 3 1 3 1 3 1 3

+ 24 4 6 7 9 7 6 = 63

Table 2.6: Luhn Formula (EAN-8 example)

Thus the last digit is 10− (63mod 10) = 10− 3 = 7.

2. Take each digit’s corresponding element: As for the first 4, Cs for the rest (table 2.7).

3. Add the delimiters ”101” at each end and ”01010” between both halves of the code.

Louis Heredero 5D 12/81 September 2022

CHAPTER 2. BARCODES 2.2. HOW IT WORKS

4. For each 1, draw a black bar and for each 0 a white one (figure 2.2).

Char. Element

8 0110111

4 0100011

2 0010011

7 0111011

3 1000010

7 1000100

2 1101100

7 1000100

Table 2.7: EAN-8 exam-
ple elements

Figure 2.2: EAN-8 example (”84273727”)

EAN-13

EAN-13 follows the same principles as EAN-8. The structure of such a code is the following:

left
A A A A A A

mid C C C C C C right
B B B B B B

Table 2.8: EAN-13 structure

This has only 12 places for elements, 6 A/B and 6 C. The 13th digit (in reality the first) is en-
coded in the pattern of A and B elements. Here is the list of patterns corresponding to each
digit:

Digit Pattern Digit Pattern

0 AAAAAA 5 ABBAAB

1 AABABB 6 ABBBAA

2 AABBAB 7 ABABAB

3 AABBBA 8 ABABBA

4 ABAABB 9 ABBABA

Table 2.9: EAN-13 1st digit patterns

Louis Heredero 5D 13/81 September 2022

CHAPTER 2. BARCODES 2.2. HOW IT WORKS

It can be noticed that the first element is always an A so that reading direction can easily be
determined.

Let’s illustrate EAN-13 by encoding the value ”978294062105”.

1. Calculate the checksum digit:

9 7 8 2 9 4 0 6 2 1 0 5

x 1 3 1 3 1 3 1 3 1 3 1 3

+ 9 21 8 6 9 12 0 18 2 3 0 15 = 103

Table 2.10: Luhn Formula (EAN-13 example)

Thus the last digit is 10− (103mod 10) = 10− 3 = 7.

2. Get the pattern corresponding to the first digit: 9→ ABBABA

3. Take the corresponding element for each digit

Char. Type Element Char. Type Element

7 A 0111011 6 C 1010000

8 B 0001001 2 C 1101100

2 B 0011011 1 C 1100110

9 A 0001011 0 C 1110010

4 B 0011101 5 C 1001110

0 A 0001101 7 C 1000100

Table 2.11: EAN-13 example elements

4. Add the delimiters ”101” at each end and ”01010” between both halves of the code.

5. For each 1, draw a black bar and for each 0 a white one.

Figure 2.3: EAN-13 example (”9782940621057”)

Louis Heredero 5D 14/81 September 2022

CHAPTER 2. BARCODES 2.3. APPLICATION IN PYTHON

2.3 Application in Python

In this section,wewill implementbarcodegeneration inPython. Wewill first programa ”Code-
39” encoder, then an EAN-8 and finally an EAN-13.

2.3.1 Code-39

This type of code being just a matter of translating each character to a particular group of
wide and narrow stripes, the implementation is quite simple.

We first create a dictionary holding the codes for each character.

code39_dict = {

"A": "100001001", "B": "001001001",

"C": "101001000", "D": "000011001",

"E": "100011000", "F": "001011000",

"G": "000001101", "H": "100001100",

"I": "001001100", "J": "000011100",

"K": "100000011", "L": "001000011",

"M": "101000010", "N": "000010011",

"O": "100010010", "P": "001010010",

"Q": "000000111", "R": "100000110",

"S": "001000110", "T": "000010110",

"U": "110000001", "V": "011000001",

"W": "111000000", "X": "010010001",

"Y": "110010000", "Z": "011010000",

"0": "000110100", "1": "100100001",

"2": "001100001", "3": "101100000",

"4": "000110001", "5": "100110000",

"6": "001110000", "7": "000100101",

"8": "100100100", "9": "001100100",

" ": "011000100", "-": "010000101",

"$": "010101000", "%": "000101010",

".": "110000100", "/": "010100010",

"+": "010001010", "*": "010010100"

}

To convert a string, wemap each character to its corresponding binary representation and join
the resulting codes with ”0” in between.

def code39(text):

text = text.upper()

text = map(lambda c: code39_dict[c], text)

return "0".join(text)

Louis Heredero 5D 15/81 September 2022

CHAPTER 2. BARCODES 2.3. APPLICATION IN PYTHON

We will also need a function to render the barcode. For this, we will use the Pygame module.

def draw_barcode(barcode, win):

barcode = list(map(int, barcode))

width = win.get_width()*0.8

height = win.get_height()*0.5

thicks = sum(barcode)

thins = len(barcode)-thicks

bar_w = width/(thicks*2+thins)

win.fill((255,255,255))

x = win.get_width()*0.1

y = win.get_height()*0.25

for i, c in enumerate(barcode):

w = 2*bar_w if c else bar_w

if i%2 == 0:

pygame.draw.rect(win, (0,0,0), [x, y, w, height])

x += w

The full python script can be found in appendix B or on GitHub3.

2.3.2 EAN-8

The first step to create an EAN-8 barcode is to compute the check digit with Luhn’s formula.
To make this function also usable for EAN-13, we need to redefine the formula as such:

1. Multiply each digit by the alternating factors 1 and 3 starting with 3 from the end.

2. Add them together then take the modulo ten and subtract the result from 10.

3. If the result is equal to 10, change it to 0.

In python, the function multiplies the ith to last digit by:

factor = 3− (i mod 2) ∗ 2

which basicly is step 1 above.

i ... 4 3 2 1 0

factor ... 3 1 3 1 3

Table 2.12: Python Luhn formula example

3https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/blob/main/python/code39.py

Louis Heredero 5D 16/81 September 2022

https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/blob/main/python/code39.py

CHAPTER 2. BARCODES 2.3. APPLICATION IN PYTHON

def luhn(digits):

checksum = sum([

digits[-i-1]*(3-i%2*2)

for i in range(len(digits))

])

ctrl_key = 10 - checksum%10

if ctrl_key == 10:

ctrl_key = 0

return ctrl_key

Both code types also need the table of elements:

A = [

0b0001101,

0b0011001,

0b0010011,

0b0111101,

0b0100011,

0b0110001,

0b0101111,

0b0111011,

0b0110111,

0b0001011

]

XOR 0b1111111

C = list(map(lambda a: a^127, A))

Reverse bit order

B = list(map(lambda c: int(f"{c:07b}"[::-1], 2), C))

The following function converts a number to the list of its bits:

def bin_list(n):

return list(map(int, f"{n:07b}"))

Finally, the encoding function:

def ean8(digits):

digits.append(luhn(digits))

elmts = []

Louis Heredero 5D 17/81 September 2022

CHAPTER 2. BARCODES 2.3. APPLICATION IN PYTHON

elmts += [1,0,1] #delimiter

for digit in digits[:4]:

elmts += bin_list(A[digit])

elmts += [0,1,0,1,0] #middle delimiter

for digit in digits[4:]:

elmts += bin_list(C[digit])

elmts += [1,0,1] #delimiter

return elmts

We will use a similar function as in subsection 2.3.1 to render the barcode

def draw_barcode(barcode, win):

width = win.get_width()*0.8

height = win.get_height()*0.5

bar_w = width/len(barcode)

win.fill((255,255,255))

x = win.get_width()*0.1

y = win.get_height()*0.25

for c in barcode:

if c:

pygame.draw.rect(win, (0,0,0), [x, y, bar_w, height])

x += bar_w

The full python script can be found in appendix C or on GitHub4

2.3.3 EAN-13

The main difference with EAN-8 is the encoding of the first digit, using an A/B pattern. We
will create a list of these patterns:

ean13_patterns = [

"AAAAAA",

"AABABB",

"AABBAB",

"AABBBA",

"ABAABB",

"ABBAAB",

4https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/blob/main/python/ean.py

Louis Heredero 5D 18/81 September 2022

https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/blob/main/python/ean.py

CHAPTER 2. BARCODES 2.3. APPLICATION IN PYTHON

"ABBBAA",

"ABABAB",

"ABABBA",

"ABBABA"

]

And the appropriate encoding function:

def ean13(digits):

pattern = ean13_patterns[digits[0]]

digits.append(luhn(digits))

elmts = []

elmts += [1,0,1] #delimiter

for d in range(1,7):

_ = A if pattern[d-1] == "A" else B

digit = digits[d]

elmts += bin_list(_[digit])

elmts += [0,1,0,1,0] #middle delimiter

for digit in digits[7:]:

elmts += bin_list(C[digit])

elmts += [1,0,1] #delimiter

return elmts

The full python script can be found in appendix C or on GitHub5

5https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/blob/main/python/ean.py

Louis Heredero 5D 19/81 September 2022

https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022/blob/main/python/ean.py

Chapter 3

QR-Codes

3.1 Origin

Eventhough barcodes have conquered the world, they still have some major issues. First of
all, their capacity is rather limited, allowing only a maximum of about twenty characters to be
encoded in a practical format. Secondly, they can only store a small group of characters, some
even only numbers. And finally, they require the reading device to be in a roughly parallel
orientation with respect to the code in order to read it.

For these reasons, the Japanese companynamedDENSOWAVE starteddeveloping anew type
of 2D code. Indeed, a barcode is one-dimensional - that is, the information is encoded on a
single axis. What DENSOWAVE tried was a two-dimensional matrix of data.

The result of their researchanddevelopmentbecame thewell-known”QR-Code”,which stands
for Quick-Response code. They were first used in Toyota factories to track car parts[3]. With
the desire to offer this technology to the largest number of people, the company decided not
to keep it private but rather make it open-source. It later became a norm in many countries
and is now specified by the ISO/IEC 18004 standard [4].

QR-Codes address all the above-mentioned problems related to barcodes.

Data type

They allow the encoding of either numbers, text, raw binary data and even Kanji characters1.
Therefore they can be used in a great variety of contexts, for example to identify objects, to
conviniently share a URL or even a small image.

1Kanji are the characters used to write Japanese

20

CHAPTER 3. QR-CODES 3.1. ORIGIN

Information density

They allow dense information storage.

Type Number of ”characters”

Numerical 7’089

Alphanumerical 4’296

Bytes 2’953

Kanji 1’817

Table 3.1: Maximum amount of data in a QR-Code [4]

The alphanumerical type can only encode the following characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:

Reading freedom

Thanks to finder patterns, they can be read in any orientation, even with perspective. Taking
intoaccount thegreatprogresswhichhappenedduring the last 30years in thefieldof cameras
and mobile phones, QR-Codes can now be scanned in a matter of milliseconds, no matter the
angle of the camera.

Error detection and correction

The other main advantage of QR-Codes is the embedded error detection and correction sys-
tem.

They come in four different levels of error correction:

• L (low): 7%

• M (medium): 15%

• Q (quartile): 25%

• H (high): 30%

A higher level indicates a greater amount of redundancy and an ability to recover a greater
part of a damaged code. This principle is often used to add a custom icon at the center of the
QR-Code, since the reader will still be able to scan it and reconstruct the hidden part.

Louis Heredero 5D 21/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

3.2 How it works

Graphically, QR-Codes are composed of black and white squares called ”modules”. Each mod-
ule represents a binary bit, black meaning 1, white meaning 0.

Similarly to section 2.2, we will only describe the encoding phase.

To make the following explanations easier to follow, we will use a concrete value.

Let’s encode the string ”Hello, World!” with level ”M” of error correction.

3.2.1 Data type

Thefirst step is to choose the appropriate data type for encoding. In our case, we can’t use the
numerical format since there are letters, nor can we use the alphanumerical, because of the
exclamation mark and lowercase letters. Thus, the most suitable encoding is the byte format.

Note that these different formats exist to optimize encoding to take the least possible space,
so it is recommended to choose the minimum required format to avoid unecessarily big QR-
Codes.

The first 4 bits of data in our code will be the format used. Numerical is 1, alphanumerical is
2, byte is 4 and kanji is 8. In our case, the format indicator will be ”0100”.

3.2.2 Version

QR-Codes come in a number of sizes, called ”versions”. Version 1 (the smallest) is a 21x21 grid,
version 2 a 25x25, version 3 29x29, and so on, up to version 40 (the largest) which is a 157x157
matrix.

To know which size our code will be, we have to refer to table D.2 indicating which version is
needed for a certain amount of data.

Our string contains 13 characters, that is 13 bytes (in ISO-8859-1) and will be encoded using
the byte format with level ”M” of error correction. Thus the final code will be of version 1.

3.2.3 Character count indicator

Before encoding our data, we need to create a header stating the total character count. For
that, the length is converted to its binary representation of n bits, where n depends on the
version and encoding mode, as shown in table 3.2.

Louis Heredero 5D 22/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

Version Num. Alpha. Byte Kanji

1 to 9 10 9 8 8

10 to 26 12 11 16 10

27 to 40 14 13 16 12

Table 3.2: Bit length of character count indicator

In our example, the number of characters is 13, which means the character count indicator is
”00001101”.

3.2.4 Data encoding

The following step is to convert the data to binary. The method used differs for each format.

Numerical

1. Split the number into 3-digit groups

2. For each group, convert the number to binary, padded to:

• 10 bits if there are 3 digits (most groups)

• 7 bits if there are 2 digits (only sometimes for the last group)

• 4 bits if there is only one digit (only sometimes for the last group)

3. Join the resulting bits end to end

Alphanumerical

1. Split the string into 2-character groups

2. For each group:

(a) Take the first character’s index in list D.1 and multiply it by 45

(b) Take the second character’s index in list D.1

(c) Add them together and convert the result to an 11-bit number

3. If the string has an odd number of characters, take the index of the last character and
convert it to a 6-bit number

Louis Heredero 5D 23/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

Byte

1. Encode the data in ISO-8859-1 (latin-1)

2. Join the 8-bit binary representation of each character end to end

Kanji

1. Encode the data in JIS X 0208 (each character is encoded on 2 bytes)

2. For each character (= pair of bytes):

(a) If the value is between 0x8140 and 0x9FFC, subtract 0x8140
Otherwise, if the value is between 0xE040 and 0xEBBF, subtract 0xC140

(b) Multiply the most significant byte by 0xC0

(c) Add the most significant byte to the least significant

(d) Join the 13-bit binary representation of each sum end to end

Example

For our example, following the byte encoding format, we get:

01000000 11010100 10000110 01010110 11000110

11000110 11110010 11000010 00000101 01110110

11110111 00100110 11000110 01000010 0001

Note that the format andcharacter count indicator havebeenaddedat thebegginning (bolded
bits).

The resulting binary string needs to be padded before continuing to the next step. This is
done in a fourfold process:

1. Get the total number of bits in the final code by multiplying column ”Data codewords”
of table D.3 by eight2. Let that beB and let b be the number of data bits we already have

2. Add B − b 0s, but at most 4

3. Add 0s so that b is a multiple of 8, if not already

4. If b < B, fill the remaining bits with the alternating bytes ”11101100” and ”00010001”

2A codeword is equivalent to an 8-bit byte

Louis Heredero 5D 24/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

In our example, we already have 116 data bits on 128 as per table D.3 (version 1, level M). Thus
we add four 0s, increasing b to 120. We don’t need to add other 0s since it is already amultiple
of 8. Finally we fill the remaining 8 bits with the alternating padding bytes. The result is:

01000000 11010100 10000110 01010110 11000110

11000110 11110010 11000010 00000101 01110110

11110111 00100110 11000110 01000010 00010000

11101100

3.2.5 Error correction

Now thatwehave encodedour data, we need to create additional error correction codewords.
QR-Codes use what is called the Reed-Solomon algorithm to detect and correct potential er-
rors in a scanned code. This algorithm is explained in more details in section 4.2.

According to table D.3, we need a certain number of error correction codewords (column ”Er-
ror correction codewords per block”). Let this number be n.

For that, we create a generator polynomial:

n−1∏
i=0

(x+ 2i)

Note that the calculation are done in a Galois field, as explained in section 4.2.

Encoded data now needs to be split in B1 blocks (see table D.3, column ”Blocks in group 1”).
Each block contains C1 data codewords (see table D.3, column ”Data codewords per group 1
blocks”).

For each block:

1. Convert each codeword to its decimal value (in the Galois field) and let that be the coef-
ficients of a ”message” polynomial.

2. Divide this polynomial by the generator polynomial created earlier.

3. Convert the coefficients of the remainder to their 8-bit binary representation and let
these be the error correction codewords for this block.

If group 2 has a non-null amount of data codewords, do the same steps for column ”Blocks in
group 2” (B2) and ”Data codewords per group 2 blocks” (C2).

For our example, n = 10, B1 = 1, C1 = 16, B2 = 0, C2 = 0. The generator polynomial has the
coefficients:

1, 216, 194, 159, 111, 199, 94, 95, 113, 157, 193

Louis Heredero 5D 25/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

We only have one block with 16 codewords, so our ”message” polynomial will have the coeffi-
cients:

64, 212, 134, 86, 198, 198, 242, 194, 5, 118, 247, 38, 198, 66, 16, 236

Dividing it by the generator polynomial, we get a remainder with the coefficients:

215, 92, 247, 55, 155, 152, 59, 246, 87, 124

that we convert to binary bytes, giving us:

11010111 01011100 11110111 00110111 10011011

10011000 00111011 11110110 01010111 01111100

3.2.6 Interleaving

Now that we have computed the error correction codewords, we need to arrange them in a
certain manner with the data codewords. The codewords go in the following order:

Data C
o
d
e
w
o
rd

1

C
o
d
e
w
o
rd

2

C
o
d
e
w
o
rd

3

C
o
d
e
w
o
rd

4

Error
correction C

o
d
e
w
o
rd

1

C
o
d
e
w
o
rd

2

C
o
d
e
w
o
rd

3

Block 1 1 5 9 x Block 1 15 19 23

Block 2 2 6 10 x Block 2 16 20 24

Block 3 3 7 11 13 Block 3 17 21 25

Block 4 4 8 12 14 Block 4 18 22 26

In this example, B1 = 2, C1 = 3, B2 = 2, C2 = 4.

In our case, since we only have 1 data block, the error correction codewords are simply ap-
pended after the data codewords.

Similarly to step 3.2.4 (Data encoding), we need to pad the end result with a certain number
of 0s before continuing. This number is given by the following table:

Version Number of 0s to add

2 to 6 7

14 to 20 3

21 to 27 4

28 to 34 3

Our example code is a version 1 so we don’t need to add any 0.

Louis Heredero 5D 26/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

3.2.7 Separators and finder patterns

Data has been encoded and now starts the placement phase, that is the creation of the black
and white matrix.

First of all, the matrix’ size (in number of modules) is given by the following formula:

(V − 1) ∗ 4 + 21

where V is the version.

The ISO standard[4] also states that a 4-module widemargin (silence zone)must be respected
all around the code. This allows scanners to easily identify and locate a QR-Code in an image.

The distinctive elements of QR-Codes are of course their three large corner squares. These
are called ”finder patterns” and are used by the reading device to find the code and correct
the perspective. They also provide information on the rotation of the image and the width
of individual modules. Finder patterns are 7x7 black squares, containing a 5x5 white square,
encircling itself a 3x3 black square. They are put in the top-left, top-right and bottom-left
corners of the matrix.

Additionally, they are separated from the rest of the code by a 1-module thickwhite line called
a separator.

For our version 1 QR-Code, this steps yields the following 21x21 matrix:

Figure 3.1: QR-Code example: separators and finder patterns

3.2.8 Alignment patterns

The next element to add are the alignment patterns. These are similar to finder patterns but
are only 5x5. They are spread across the whole code and provide reference points for the
scannnig device to improve reliability. The larger the code, the more alignment patterns are

Louis Heredero 5D 27/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

needed. Their positions depend on the version and are referenced in table D.4. This table lists
all possible x and y coordinates for the patterns. This means that for version 2, the alignment
patterns are located at (6,6), (6,18), (18,6) and (18,18). A pattern will only be present if the
area it covers is still empty (i.e. it doesn’t overlap with the separators and finder patterns).

Since our example is a version 1 QR-Code, no alignment pattern is needed (see figure 3.3 for
version 10 code with alignment patterns).

3.2.9 Timing pattern

An additional element helping the scanner and improving readability is the timing pattern.
It consists of a alternating black and white stripe joining the bottom-left and top-left finder
pattern, and the top-left and top-right.

The pattern is aligned to the right and bottomborders of the top-left finder patterns, starting
with white on the separators.

Figure 3.2: QR-Code example: timing patterns

3.2.10 Reserved area

Some areas of the matrix are also reserved for format information which will be added later.
This corresponds to the modules around the top-left finder pattern, the modules on the right
of the bottom-left pattern and those just below the top-right one.

Additionally, for versions greater than 6, a 3x6 zone on the left of the top-right finder pattern
plus a 6x3 above the bottom-left one are reserved for version information.

Figure 3.3 shows an example of these reserved areas (in light gray) for a version 10 QR-Code
(left) and for our example (right).

Louis Heredero 5D 28/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

Figure 3.3: QR-Code example: reserved areas

A black module is also set next to the bottom-left finder pattern, on the right of its top-right

corner. Its coordinates are the following:

{
x = 8

y = 4V + 9
where V is the version.

3.2.11 Data placement

The matrix is now ready to receive the data bit string. The placement is done in zigzags, start-
ing from the bottom-right, going up. Each byte is placed in a 2 modules wide region in a stag-
gered manner. When a pattern, separator or reserved area is encountered, the position is
skipped and the process continues further.

Figures 3.4a and 3.4b represent the way a byte is layed out when going up or down.

Figures 3.4c and 3.4d show how skipping and turning are processed.

When encountering the vertical timing pattern, that column is entirely skipped and the place-
ment continues on the next one. For each byte, the bits are layed from Most Significant bit
(MSB) to Least Significant Bit (LSB).

Louis Heredero 5D 29/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

(a) Going up (b) Going down

(c) Skipping reserved areas

(d) Turning at border

Figure 3.4: QR-Code byte placement

If the available space if not fully filled after placing the data, the rest is filled with 0s3.

Our example QR-Code, once filled with data, looks like this:

Figure 3.5: QR-Code example: data placement

3it shall be recalled that 0 means white and 1 means black

Louis Heredero 5D 30/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

3.2.12 Masking

For optimal readability, it is important that certain patterns ofmodules don’t appear inside the
code. For example, there shouldn’t be any shape resembling the finder or alignment patterns
(i.e. modules with the ratio 1:1:3:1:1). Furthermore, a balanced amount of black compared to
white is preferred for better decoding.

For this purpose, we need to apply a mask on the code, switching white for black modules
and vice versa where it applies. QR-Codes have 8 different masks which can be used. Obvi-
ously, these are only applicable on the data area and should not modify the timing, finder and
alignment patterns.

To choose one, we will apply them one after the other on our current QR-Code, and evaluate
the resulting code, giving it a penalty score for each undesired feature. Then, the mask with
the lowest score will be chosen.

Figure 3.6 lists the different possiblemasks. A blackmaskmodulemeans that the correspond-
ing data module needs to be inverted. The operator ”//” is integer division.

(a) (x+y) mod 2 = 0 (b) y mod 2 = 0

(c) (x) mod 3 = 0 (d) (x+y) mod 3 = 0

(e) (y//2+x//3) mod 2 = 0 (f) ((x*y) mod 2 + (x*y) mod 3) = 0

(g) ((x*y) mod 2 + (x*y) mod 3) mod 2 = 0 (h) ((x+y) mod 2 + (x*y) mod 3) mod 2 = 0

Figure 3.6: QR-Code masks

Louis Heredero 5D 31/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

Evaluation

Evaluation of a mask is done thanks to 4 criteria.

They evaluate whether the code is easy to read or not. For example, criterion 3 gives a high
penalty for every pattern with the same proportions as finder patterns to avoid confusion for
the reading device.

Before applying a mask for evaluation, format and version information have do be added on
the code, as described in sections 3.2.13 and 3.2.14.

1. 5+ consecutive modules of the same color:

If a line or column of 5 or moremodules of the same color is found in the code, a penalty
score is added. For a strip of 5+i same coloredmodules, the penalty is worth 3+i points.

2. 2x2 blocks:

Each 2x2 block of similarmodules adds 3 points to the penalty score. Overlapping blocks
are taken into account.

3. 1:1:3:1:1:4 patterns:

For each pattern with the ratios 1:1:3:1:1:4 or 4:1:1:3:1:1, a penalty of 40 points is given.
This criterion takes into account the 4-module wide margins all around the code4. This
means there are at least 18 correspondances in every code.

4. Proportion of black and white modules:

A penalty is attributed according to the deviation from a 50/50 distribution in black and
white modules across the whole QR-Code. The calculation method is the following:

P = b100 ∗B/(W ∗H)c

P1 = P − P mod 5

P2 = P1 + 5

S = min

(
|P1 − 50|

5
,
|P2 − 50|

5

)
∗ 10

where B is the total number of black modules,W andH are the width and height of the QR-
Code, and S is the penalty score given for this criterion.

Applying this to our QR-Code, we can determine that the best mask is mask 3.6f with a score
of 442. Figures 3.7a to 3.7d detail the penalties for each criterion.

4see subsection 3.2.7

Louis Heredero 5D 32/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

(a) QR-Code example: mask evaluation (1) (b) QR-Code example: mask evaluation (2)

(c) QR-Code example: mask evaluation (3) (d) QR-Code example: mask evaluation (4)

Figure 3.7: QR-Code example: mask evaluation

3.2.13 Format information

The last step to complete a fully functional QR-Code is to add the format information, and
version information for versions bigger than 6.

First we need to create a format string containing the level of error correction and the mask
used. The correction level is encoded on 2 bits as follows:

Louis Heredero 5D 33/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

Level Value (bin)

L 01

M 00

Q 11

H 10

Table 3.3: QR-Code error correction level indicator

Then the mask id is converted to a 3-bit binary number and appended to the error correction
level indicator.

The string is padded by an additional 10 0s to make it 15 bits long.

Similarly to what has been donewith data previously, the format string is complementedwith
error correction bits, this time using Bose-Chaudhuri-Hocquenghem (BCH) codes. The prin-
ciple is similar to the Reed-Solomon algorithm in that a message polynomial is divided by a
generator polynomial. To create the message polynomial, each bit of the format string rep-
resents the coefficient of a term. The same applies for the generator polynomial, which is
always derived from the binary number 10100110111. The generator polynomial is thus

x10 + x8 + x5 + x4 + x2 + x+ 1

The division’s remainder is then padded on the left with 0s to make it 10 bits long.

The final bit string is constructed by concatenating the format string with the error correction
bits, and XORing5 the result with themask string 101010000010010. Thismask ensures the final
format string is not made of only 0s.

Once calculated, the bit string is layed out in the reserved strips around the finder patterns,
as shown in figure 3.8 (0 being the LSB and 14 the MSB)

Figure 3.8: QR-Code format information string layout

5With the binary XOR operator

Louis Heredero 5D 34/81 September 2022

CHAPTER 3. QR-CODES 3.2. HOW IT WORKS

It is to be noted that format information appears twice, since its decoding is essential for
reading the whole code.

In our case, the error correction indicator for level M is 00 and we used the mask with id 2,
so our format string is 000100000000000. Dividing it by the generator polynomial yields the
remainder 1001101110.

Adding it to the format string and XORing it with the mask string, we get 101111001111100.

These bits are then put in the reserved areas of the matrix, making figure 3.9

Figure 3.9: QR-Code example: format information

Our QR-Code is now fully finished and can be scanned.

3.2.14 Version information

For QR-Codes of version 7 and bigger, additional data is added to state the code’s version.

To generate the version string, first convert the version to its 6 bit binary representation. Then
append the remainder of the division by the generator polynomial

x12 + x11 + x10 + x9 + x8 + x5 + x2 + 1

padded on the left to 12 bits, following the same methods as for format information.

This string is then put in the two reserved 6x3 and 3x6 rectangles. The LSB is placed in the
top-left corner of the rectangles. For the top-right area, the string goes down, then to the
right. For the bottom-left rectangle, the string goes to the right, then down.

Louis Heredero 5D 35/81 September 2022

CHAPTER 3. QR-CODES 3.3. APPLICATION IN PYTHON

3.3 Application in Python

In this section, we will look at my Python QR-Code generator implementation. For the sake of
brevity, only some specific parts of the program will be commented.

3.3.1 Python features

The script takes advantage of several Python-specific features.

Dunder methods

The most important is the ”dunder methods”, short for ”double underscore methods”. These
are special overridable methods used for builtin behaviors.
For example, the __add__, __sub__, __mul__, __truediv__ and __pow__ methods respectively
define the behavior of the ”+”, ”-”, ”*”, ”/” and ”**” operators.

This is particulary useful to create the Galois field’s arithmetic used for QR-Codes. For exam-
ple, multiplication is defined by this method:

def __mul__(self, n):

if self.val == 0 or n.val == 0:

return GF(0)

return GF.EXP[GF.LOG[self.val].val + GF.LOG[n.val].val].copy()

where val is the element’s value and GF.LOG and GF.EXP are arrays containing the values of
exponents and logarithms for the field (see subsection 3.3.2).

Anonymous functions

Anonymous, or lambda, functions are short unnamed functions. They are often used for very
basic operations. In our case, they are utilized for masks.

For example, the first mask is defined as lambda x,y: (x+y)%2 == 0, a function taking two
arguments x and y and returning whether the coordinates should be masked or not.

3.3.2 Precomputed data

Some values related to the creation of QR-Codes are precomputed, such as the capacities for
each data type or the number of error correction codewords, as determining them is done

Louis Heredero 5D 36/81 September 2022

CHAPTER 3. QR-CODES 3.3. APPLICATION IN PYTHON

through reverse engineering and no simple direct formula can be established. These values
are stored in text files (error_correction.txt and qr_versions.txt) and loaded into tables at
the beginning of the scripts.

Regarding Galois fields, all powers and logs are also calculated beforehand, for the sake of
ease of use, using the following loops:

class GF:

def __init__(self, val):

self.val = val

...

GF.EXP = [GF(0)]*512

GF.LOG = [GF(0)]*256

value = 1

for exponent in range(255):

GF.LOG[value] = GF(exponent)

GF.EXP[exponent] = GF(value)

value = ((value << 1) ^ 285) if value > 127 else value << 1

for i in range(255, 512):

GF.EXP[i] = GF.EXP[i-255].copy()

Credits for this method goes to Reed–Solomon codes for coders — Wikiversity,[12, Multiplica-
tion with logarithms]

3.3.3 Data placement

One of the challenges to overcome was the data placement phase. To avoid lengthening this
particular part, mathematical tricks are used.

For visual aid, see figure 3.4 in subsection 3.2.11.

Before starting, the data bit string which will be placed is stored in a string variable named
”self.final_data_bits”. The position is set to the lower-right corner of thematrix. Thematrix
(self.matrix) is a 2D array in which -1 indicates a free module.

A variable named dir_ is also set to -1 and is responsible to keep track wether we are going
up or down. A variable i initialized to 0 will hold the index of the current bit to be placed. The
variable zigzagmanages the zigzag pattern.

1 dir_ = -1 #-1 = up | 1 = down

2 x, y = size-1, size-1

3 i = 0

4 zigzag = 0

Louis Heredero 5D 37/81 September 2022

CHAPTER 3. QR-CODES 3.3. APPLICATION IN PYTHON

5

6 while x >= 0:

7 if self.matrix[y,x] == -1:

8 self.matrix[y,x] = self.final_data_bits[i]

9 i += 1

10

11 if ((dir_+1)/2 + zigzag)%2 == 0:

12 x -= 1

13

14 else:

15 y += dir_

16 x += 1

17

18 if y == -1 or y == size:

19 dir_ = -dir_

20 y += dir_

21 x -= 2

22

23 else:

24 zigzag = 1-zigzag

25

26 if x == 6:

27 x -= 1

The algorithm runs until it reaches the left side (line 6).

For each loop, if the module is free, the current bit is placed and i is incremented.

If we are going up and zigzag equals 0, or if we are going down and zigzag equals 1, then we
move to the left (line 11-12).
Otherwise, we move forward in the current direction and one module to the right.

If we reach the top or bottom side (current position is outside of the matrix), the direction is
flipped, we come back one step and move to the left.

Lines 26-27 make the placement entirely skip column 6, which is where the vertical timing
pattern is located.

Table 3.4 shows the evolution of the different variables during placement.

Louis Heredero 5D 38/81 September 2022

CHAPTER 3. QR-CODES 3.3. APPLICATION IN PYTHON

x y dir_ zigzag

20 20 -1 0

19 20 -1 1

20 19 -1 0

19 19 -1 1

20 18 -1 0

...

20 0 -1 0

19 0 -1 1

18 0 1 1

17 0 1 0

18 1 1 1

Table 3.4: QR-Code data placement algorithm

3.3.4 Mask evaluation

Mask evaluation is quite straight-forward especially for criteria 1, 2 and 4 (see section 3.2.12)

Criterion n° 3 is a bit more complex. To keep track of the patterns encountered in each row
(or column), a History object is used. This object holds a list of widths of the different color
zones.

Louis Heredero 5D 39/81 September 2022

Chapter 4

Error detection and correction

This chapter introduces twomethods to create self-correctingmessages: Hamming codes and
Reed-Solomon codes. The former is based on parity bits while the latter takes advantage of
advanced mathematical properties of modular arithmetic and polynomials.

4.1 Hamming Codes

Whenworking with binary data, one way of checking if a receivedmessage is corrupted or not
is to add a parity bit. The parity of a binary number is even if it has an even number of 1s and
odd otherwise. A parity check bit is added such that the total parity of the number is even, i.e.
0 if it is already even, 1 otherwise.

parity bit

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6
parity: even

1 1 0 0 1 1

With this, a single bit error (that is, one bit is wrong) is easy to detect because the parity of
the message becomes odd.

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6
parity: odd

1 1 1 0 1 1

However, a single parity bit doesn’t provide enough information to allow locating the error
or detecting multiple errors, because an even number of errors would keep an even parity
overall.

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6
parity: even

1 1 1 0 0 1

40

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.1. HAMMING CODES

Hamming codes are a kind of parity check codes. Instead of using only one parity bit how-
ever, they include several so that locating becomes possible, as well as detecting (not always)
multiple errors.

When creating aHamming code fromamessage, data first has to be split into blocks of a given
size. For each block a certain number of parity bits is assigned. These two variables (blocksize
and number of parity bits) determine the type of Hamming code. For example a Hamming
code with 3 parity bits will form 7-bit blocks, meaning each block can hold 4 data bits. It can
thus be called Hamming(7, 4).

Smaller blocksizes allowmoreerrors tobe corrected, becauseeachblock can correct oneerror,
but have a lower data density1. On the other hand, larger blocksizes allow less errors to be
corrected but have a higher data density.

Hamming codes are created in such a way that when a bit is flipped, the parity bits indicate
exactly where the error occured. For that, each position in the code which is a power of two is
a parity bits. Then, each parity bit covers the parity of all bits at positions containing its power
in their binary representation. For example, the parity bit at position 4 (0b100) covers bits 5
(0b101), 6 (0b110), 7 (0b111), 12 (0b1100), 13 (0b1101), 14 (0b1110), 15 (0b1111), ...

Table 4.1 taken fromHamming code—Wikipedia, The Free Encyclopedia[9] offers a good visual
representation of this structure:

Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Encoded data bits p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11

Parity

bit
coverage

p1 3 3 3 3 3 3 3 3

p2 3 3 3 3 3 3 3 3

p4 3 3 3 3 3 3 3 3

p8 3 3 3 3 3 3 3 3

Table 4.1: Hamming code structure

Here we can see that each data bit (d1, d2, d3, ...) is covered by a unique set of parity bits.

1data density is the ratio of data bits over blocksize

Louis Heredero 5D 41/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.1. HAMMING CODES

Let’s create a Hamming(15, 11) code for the message 11101100010. The first step is to lay out
the bits in table 4.1 like so:

Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Encoded data bits p1 p2 1 p4 1 1 0 p8 1 1 0 0 0 1 0

Parity

bit
coverage

p1 - 3 3 7 3 7 7 7

p2 - 3 3 7 3 7 3 7

p4 - 3 3 7 7 7 3 7

p8 - 3 3 7 7 7 3 7

Parity bit Covered 1s Parity of covered bits Value

p1 3 odd 1

p2 4 even 0

p4 3 odd 1

p8 3 odd 1

Table 4.2: Hamming code example

Placing the parity bits in their relevant positions, we get the hamming code 101111011100010.

To illustrate the decoding process, let’s alter bit 11 and change it to a 1. Now, recalculating
the parity bits and comparing the results with the received message, we can find the location
of the error.

Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Received data bits 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0

Parity

bit
coverage

p1 - 3 3 7 3 3 7 7

p2 - 3 3 7 3 3 3 7

p4 - 3 3 7 7 7 3 7

p8 - 3 3 3 7 7 3 7

Parity bit Covered 1s Parity of covered bits Value Received value

p1 4 even 0 1

p2 5 odd 1 0

p4 3 odd 1 1

p8 4 even 0 1

Table 4.3: Hamming code example decoding

Louis Heredero 5D 42/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.2. REED-SOLOMON ALGORITHM

Thedifference (XOR)between columns ”Value” and ”Received value” forms thebinary number
0b1101 = 11, the location of the error.

4.2 Reed-Solomon algorithm

The Reed-Solomon algorithm is a mathematical process allowing the decoding of a partially
corrupted message. It is used in many domains for its strength and reliability, such as for
spatial communication, CD/DVD players, some television broadcasts and QR-Codes.

Reed-Solomon codes were developed by Irving S. Reed and Gustave Solomon in 1960 [7]

As they rely on abstract and complexmathematical concepts, this sectionwill not go in specific
details about the actual decoding process. For curious readers, see Reed Solomon Encoding -
Computerphile[1] (presentation, general concept),Reed–Solomonerror correction—Wikipedia,
The Free Encyclopedia[11] (in depth article) and Tutorial on Reed-Solomon Error Correction Cod-
ing[2] (complete manual and explanations)

4.2.1 Error detection

Before considering error correction, it is necessary to talk about error detection. Several
methods have been developed for this purpose.

The most basic, as seen in section 4.1, is a parity check. It consists of appending one or more
”parity bits” to a binary message, such that the overall parity is known. For example, let table
4.4 be our raw message

0 1 0 0 0 0 1 1

Table 4.4: Error detection: raw message

The parity of this byte is odd – because there are 3 1s – so an additional 1 is added to the end.

In this way, if the message is corrupted – by 1 bit maximum – it becomes even, and we know
there is an error. Now obviously it doesn’t provide any information on the exact location of
the error in the message and can’t detect an even number of errors.

However, this principle can be extended to include a parity bit for every byte. If represented
as a table in which each row is a byte, it can also include parity bits for each column. Table 4.5
is an example of such usage of parity bits. This implementation is even able to correct a single
error as the row and column would be odd.

Louis Heredero 5D 43/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.2. REED-SOLOMON ALGORITHM

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 parity

byte 0 0 1 0 0 0 0 1 1 1

byte 1 0 1 1 0 1 1 1 1 0

byte 2 0 1 1 0 0 1 0 0 1

byte 3 0 1 1 0 0 1 0 1 0

byte 4 0 1 1 1 0 0 1 1 1

parity 0 1 0 1 1 1 1 0 1

Table 4.5: Error detection: bytes table parity

Such codes however don’t provide enough error correction capability - at most 1 bit. Other
methods, like the previously explained Hamming codes, allow a more efficient use of parity
bits, increasing to some degree the number of fixable errors.

Reed-Solomon codes use properties of polynomials and modular arithmetic to produce more
efficient and more robust correction data.

4.2.2 Binary to polynomials

Instead of working directly with binary data, Reed-Solomon codes treat messages as poly-
nomials. These are formed from binary data as follows: each byte is converted to a decimal
integer, representing coefficients of the polynomial.

For example:

raw binary 01000011 01101111 01100100 01100101 01110011

decimal 67 111 100 101 115

polynomial 67x4 + 111x3 + 100x2 + 101x+ 115

4.2.3 Galois Fields

Since themain applications of Reed-Solomon codes are related to digital devices, it is relevant
to use bits and bytes. As such, all calculations are performed in a Galois field. A Galois field is
basicly a finite set of numbers on which arithmetic operations results in numbers of the set.
In the case of QR-Codes, G(256) – a Galois field of the integers 0 to 255 incl. – is used. This
means every operation between numbers results in a value between 0 and 255 incl., which is
an eight-bit positive integer. In this field, addition and subtraction are equivalent and defined
as the binary XOR operation. For example:

17 + 13 = 17− 13 = 28

⇔ 0b10001⊕ 0b1101 = 0b1101⊕ 0b10001 = 0b11100

Louis Heredero 5D 44/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.2. REED-SOLOMON ALGORITHM

Multiplication is more complex though. One property of this Galois field is that every number
can be represented as a power of two, XOR 285. For example:

217 =(28︸︷︷︸
256

⊕285) ∗ 29 = 29 ∗ 29

=[(29 ∗ 24)︸ ︷︷ ︸
464

⊕285] ∗ 25 = 205 ∗ 25

=[(205 ∗ 2)︸ ︷︷ ︸
410

⊕285] ∗ 24 = 135 ∗ 24

=[(135 ∗ 2)︸ ︷︷ ︸
270

⊕285] ∗ 23 = 19 ∗ 23

=152

⇒exp2(17) = 152

⇒ log2(152) = 17

To multiply two numbers a and b in the Galois field:2

a ∗ b = exp(log(a) + log(b))

which also works in regular arithmetic (in N∗
+).

Division works similarly, but because there are no negative or fractional number in the field,
the exponent is kept in the range 0-255 incl. like so:

a

b
= exp([log(a)− log(b) + 255]mod 255)

And powers too:
ab = exp([log(a) ∗ b]mod 255)

4.2.4 Generating error correction

To create Reed-Solomon error correction bytes, a generator polynomial g(x) is needed. This
polynomial is created using equation 4.1:

g(x) =

d−1∏
i=0

(x+ 2i) (4.1)

where d is one more than the degree of the polynomial, equivalent to the number of error
correction bytes.

Letm(x)beourmessage polynomial (see subsection 4.2.2) and g(x) the generator polynomial.
The error correction polynomial Ec(x) is then the remainder of the long polynomial division
m(x)/g(x).

2from now on, exp and log are assumed to be base 2

Louis Heredero 5D 45/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.2. REED-SOLOMON ALGORITHM

Let’s illustrate this by creating error correction for the string ”Codes”. In UTF-8, the message
bytes are 67, 111, 100, 101, 115, thusm(x) = 67x4 + 111x3 + 100x2 + 101x+ 115. We will take
the generator polynomial of degree 4, that is:

g(x) = (x+ 1) ∗ (x+ 2) ∗ (x+ 4) ∗ (x+ 8) = x4 + 15x3 + 54x2 + 120x+ 64

And thus (reminder that addition and subtraction in the galois field is the binary XOR opera-
tion):

67 111 100 101 115 0 0 0 0 1 15 54 120 64

−67 −246 −91 −227 −13 67 153 107 43 8

153 63 134 126

−153 −84 −222 −154 −137

107 88 228 137

−107 −115 −120 −191 −223

43 156 54 223

−43 −148 −121 −212 −18

8 79 11 18

−8 −120 −173 −231 −58

55 166 245 58

⇒ Ec(x) = 55x3 + 166x2 + 245x+ 58

Details of the first step:

67 ∗ 1 =exp(log(67) + log(1)) = exp(98 + 0) = exp(98) = 67

67 ∗ 15 =exp(log(67) + log(15)) = exp(98 + 75) = exp(41) = 246

67 ∗ 54 =exp(log(67) + log(54)) = exp(98 + 249) = exp(155) = 91

67 ∗ 120 =exp(log(67) + log(120)) = exp(98 + 78) = exp(44) = 227

67 ∗ 64 =exp(log(67) + log(64)) = exp(98 + 6) = exp(100) = 13

Then, to communicate our message, Ec(x) is converted to binary and appended to our raw
message data, in our case, the final message would be: 67, 111, 100, 101, 115, 55, 166, 245,
58.

This is the actual data sent by a device, or in the case of QR-Codes, the actual data encoded
on the symbol. Let it be a polynomial named s(x) (for sent data).

Unfortunately, this is not always what is received by the recipient (or read by the scanner).
Some interferencemay happen during transmission and datamay be altered. Let the received
data be the polynomial r(x) = s(x) + e(x) (where e(x) is the error polynomial).

Louis Heredero 5D 46/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.2. REED-SOLOMON ALGORITHM

In the next section, we will outline the main steps and basic mathematical principles required
for error correction and detection through the Reed-Solomon algorithm.

4.2.5 Detecting and correcting errors

The first step to locating potential errors in a received Reed-Solomon code is to calculate its
”syndrome polynomial” S(x). The coefficient of the ith degree term of this polynomial is the
value of r(2i) (the degree of S(x) is equal to the number of error correction bytes minus 1, in
our case 2). This means:

S(x) =

d−1∑
i=0

r(2i) ∗ xi

To illustrate the algorithm, we will take

r(x) = 67x8 + 111x7 + 110x6 + 101x5 + 115x4 + 50x3 + 166x2 + 245x+ 58

⇒ e(x) = 10x6 + 5x3

Thus,
S(x) = 253x3 + 252x2 + 146x+ 15

Reed-Solomon codes provide a very useful mathematical property. In fact, if s(x) = r(x) ⇒
e(x) = 0, then S(x) = 0, enabling a fast return if there is no corruption.

In the case where S(x) 6= 0, we need to compute two other polynomials, the locator and eval-
uator polynomials. The former helps determine positions of errors whilst the latter is used to
find the magnitude of each error, that is, the difference with the real value.

These can be foundwith the help of the euclidean algorithm. The exactmethods usedwill not
be described here as the mathematical implications behind them are much above the level of
this work, but there functioning and alternatives are well documented in Tutorial on Reed-
Solomon Error Correction Coding[2] (from p.65, section 4.3.1).

From our example, we would get the following polynomials:

Elocator(x) = 58x2 + 72x+ 1

Eevalutor(x) = 13x+ 15

Locator polynomial Once the locator polynomial has been computed, it can be used to get
the precise position of each error, as long as the number of errors is not greater than the
correction capacity.

Louis Heredero 5D 47/81 September 2022

CHAPTER 4. ERROR DETECTION AND CORRECTION 4.2. REED-SOLOMON ALGORITHM

The error location polynomial3 is first calculated from the locator polynomial using Chien
search (not described here), a ”fast algorithm for determining roots of polynomials defined
over a finite field”[8].

In this polynomial, each coefficient’s log (in the Galois field) is the byte index of an error in the
received message (starting from the end) – or degree of a wrong coefficient in r(x).

Continuing the example, we obtain:

Elocation(x) = 64x+ 8

Evaluator polynomial Using the error location and evaluator polynomial in Forney’s algo-
rithm, it is possible to find the magnitude of each error, that is the coefficients of e(x).

Our result:
Emag(x) = 10x+ 5

Correction We now have all the information needed to correct the received message. For
that, we need to add the magnitudes to their corresponding locations. Again, the locations
are the logarithms of each coefficient in the error location polynomial andmagnitudes are the
coefficients of Emag .

Our example has two errors, since bothElocation andEmag are second degree polynomials. For
the first error, we add 10 to r6 (6 being log(64)). For the second error, we add 5 to r3 (3 being
log(8)).

We can finally recover the original message: 67, 111, 100, 101, 115, 55, 166, 245, 58.

3not to be confused with the error locator polynomial

Louis Heredero 5D 48/81 September 2022

Chapter 5

Custom code

In this chapter, wewill create a new type of 2D code, based on concepts discussed in this work:
the Lycacode.

Some design choices have been made for ease of use and others for aesthetic purposes, each
explained in their relevant section.

The basic format is in the formof a trefoil cross, the blazon of Saint-Maurice and of the Collège
de l’Abbaye.

Figure 5.1: Lycacode: trefoil cross and squares

This cross is split into 25 squares which hold data. Each square is made of a 3x3 grid of dots
and blanks, representing bits. The right of figure 5.1 shows how data (white dots) is put in the
squares (highlighted in black)1. A dot represents a 1 while the absence of one is a 0.

1the black squares are simply visual aids and are not part of the final code

49

CHAPTER 5. CUSTOM CODE 5.1. ENCODING

The decision of using a grid-like pattern is convient for data placement as well as for reading
the code.

The central square is reserved for the orientation pattern, as described in subsection 5.3.3.
Additionally, the three top- and bottom-most dots are saved for the mask id (see subsec-
tion 5.3.4).

5.1 Encoding

This code can work in one of four modes:

0. Person

1. Location

2. Link

3. Text

5.1.1 Person - mode 0

In mode 0, the code represents a person from the school. It can either be a student (type 0),
a teacher (type 1) or someone else (type 2), such as the cleaning staff or caretaker. Table 5.1
lists the different values encoded by each type and their corresponding bit size. Column ”bit
size” is the number of bits the value is encoded on. These have been chosen to use as few bits
as possible to leave room for possible future additional data.

Type Value Bit size

Student

type 2

id 20

year 3

class 4

initials 10

Teacher
type 2

id 20

Other
type 2

id 20

Table 5.1: Lycacode: person mode - values

Louis Heredero 5D 50/81 September 2022

CHAPTER 5. CUSTOM CODE 5.1. ENCODING

For students

year is the year number. DUBS is represented by the value 0.
class is the index of the class letter in the alphabet, starting from 0. For example, D is 3.
initials represent the initial of thefirstname and that of the lastname, each as 5 bit numbers.
The value of each letter is their index in the alphabet, starting from 0.

Example

type id year class initials

Student 16048 5 D LH

Bits: 00 / 00 / 00000011111010110000 / 101 / 0011 / 01011 / 00111

5.1.2 Location - mode 1

In mode 1, the code represents a location in the school. The section is encoded on 3 bits
according to the following table:

Section Value

A 0

B 1

C 2

D 3

Boarding school 4

”Bateau” 5

Sports alley 6

Football fields 7

Table 5.2: Lycacode: location mode - sections

Additionally the room number (or other id) is encoded on 9 bits.

Example

section room

4 209

Bits: 01 / 100 / 011010001

Louis Heredero 5D 51/81 September 2022

CHAPTER 5. CUSTOM CODE 5.2. ERROR CORRECTION

5.1.3 Link - mode 2

In mode 2, the code represents a URL. The actual URLs are stored in a database and only the
id is saved on the code as a 32 bit number. Scanners then fetch the URL info from the server’s
database.

5.1.4 Text - mode 3

In mode 3, the code represents normal text. Text data is simply converted to UTF-8. The
number of encoded characters is first encoded on 4 bits and added before text data. Due to
its limited capacity, a Lycacode can only store up to 14 characters.

Example

length text

4 Lyca

Bits: 11 / 0100 / 01001100 / 01111001 / 01100011 / 01100001

5.2 Error correction

It goes without saying that this code uses some kind of error correction. To keep it simple
enough, Hamming(7, 4) codes have been chosen to fulfil this role. Encodeddata is first padded
to the maximum number of data bitsM :

M = T ∗R

where T is the total number of bits which can be encoded on the cross and R is the ratio of
data bits over blocksize (here, R = 4

7). T can be calculated as follows:

T = 32︸︷︷︸
number of dots
in a square

∗24− 6︸︷︷︸
mask id

5.3 Example

Let’s create a Lycacode to illustrate. We will make a student code using the values from the
example in subsection 5.1.1.

Louis Heredero 5D 52/81 September 2022

CHAPTER 5. CUSTOM CODE 5.3. EXAMPLE

5.3.1 Data encoding

Table 5.3 lists all values to encode and their respective binary strings.

Property Value Binary

Mode 0 00

Type 0 (=student) 00

Id 16048 00000011111010110000

Year 5 101

Class 3 (=D) 0011

Initials LH 01011 00111

Table 5.3: Lycacode: example values

The raw data bit string is thus:

00︸︷︷︸
mode

00︸︷︷︸
type

00000011111010110000︸ ︷︷ ︸
id

101︸︷︷︸
year

0011︸︷︷︸
class

0101100111︸ ︷︷ ︸
initials

We then need to pad it to fill the remaining free bits. First we pad with zeros to the nearest
multiple of 4 (data bits per block). Then we fill the rest with a pattern of consecutive binary
numbers2, like this:

01101110010111011110001001101010111100110111101111...

This pattern has the sole purpose of adding pseudo-random data so that there is data on the
whole code. This is only an aesthetic choice.

2the pattern is the series of natural numbers in binary starting from 0, e.g. 0, 1, 10, 11, 100, ...

Louis Heredero 5D 53/81 September 2022

CHAPTER 5. CUSTOM CODE 5.3. EXAMPLE

5.3.2 Hamming codes

Finally we construct the Hamming codes:

1 2 3 4 5 6 7

Group 1 _ _ 0 _ 0 0 0

Group 2 _ _ 0 _ 0 0 0

Group 3 _ _ 0 _ 0 1 1

Group 4 _ _ 1 _ 1 1 0

Group 5 _ _ 1 _ 0 1 1

Group 6 _ _ 0 _ 0 0 0

Group 7 _ _ 1 _ 0 1 0

Group 8 _ _ 0 _ 1 1 0

Group 9 _ _ 1 _ 0 1 1

Group 10 _ _ 0 _ 0 1 1

Group 11 _ _ 1 _ 0 0 0

Group 12 _ _ 0 _ 1 1 0

Group 13 _ _ 1 _ 1 1 0

Group 14 _ _ 0 _ 1 0 1

Group 15 _ _ 1 _ 1 0 1

Group 16 _ _ 1 _ 1 1 0

Group 17 _ _ 0 _ 0 1 0

Group 18 _ _ 0 _ 1 1 0

Group 19 _ _ 1 _ 0 1 0

Group 20 _ _ 1 _ 1 1 1

Group 21 _ _ 0 _ 0 1 1

Group 22 _ _ 0 _ 1 1 1

Group 23 _ _ 1 _ 0 1 1

Group 24 _ _ 1 _ 1 1 0

Group 25 _ _ 0 _ 0 0 1

Group 26 _ _ 0 _ 0 0 1

Group 27 _ _ 1 _ 0 0 1

Group 28 _ _ 0 _ 1 0 0

Group 29 _ _ 1 _ 1 1 0

Group 30 _ _ 1 _ 0 0 1

1 2 3 4 5 6 7

Group 1 0 0 0 0 0 0 0

Group 2 0 0 0 0 0 0 0

Group 3 1 0 0 0 0 1 1

Group 4 0 0 1 0 1 1 0

Group 5 0 1 1 0 0 1 1

Group 6 0 0 0 0 0 0 0

Group 7 1 0 1 1 0 1 0

Group 8 1 1 0 0 1 1 0

Group 9 0 1 1 0 0 1 1

Group 10 1 0 0 0 0 1 1

Group 11 1 1 1 0 0 0 0

Group 12 1 1 0 0 1 1 0

Group 13 0 0 1 0 1 1 0

Group 14 0 1 0 0 1 0 1

Group 15 1 0 1 0 1 0 1

Group 16 0 0 1 0 1 1 0

Group 17 0 1 0 1 0 1 0

Group 18 1 1 0 0 1 1 0

Group 19 1 0 1 1 0 1 0

Group 20 1 1 1 1 1 1 1

Group 21 1 0 0 0 0 1 1

Group 22 0 0 0 1 1 1 1

Group 23 0 1 1 0 0 1 1

Group 24 0 0 1 0 1 1 0

Group 25 1 1 0 1 0 0 1

Group 26 1 1 0 1 0 0 1

Group 27 0 0 1 1 0 0 1

Group 28 1 0 0 1 1 0 0

Group 29 0 0 1 0 1 1 0

Group 30 0 0 1 1 0 0 1

Table 5.4: Lycacode: example hamming codes

Louis Heredero 5D 54/81 September 2022

CHAPTER 5. CUSTOM CODE 5.3. EXAMPLE

5.3.3 Laying out data

The matrix layout is shown in figure 5.2a. Notice the center square; it is used for rotation
and mirror image detection. The middle pattern has to be asymmetrical both in reflection
and rotation. Here, the top dot helps determine rotation, while the left one is used to check
whether the code is mirrored or not. The central dot indicates that this is a Lycacode. Indeed,
another type of code, Mini Lycacodes, has been created. Those don’t have this dot, signaling
that they are Mini Lycacodes.3

The top and bottom gray areas are reserved for the mask id as explained later. Also note that
white means 1 and black 0.

Starting from the top left going in reading direction, the bits are layed out in the free areas.
As for QR-Codes, the first bit of each group is first layed, then the second, the third and so
on. Figure 5.2b shows the result of this step. The interleaving process allow a division of data
in such a way that if a portion of the code is unreadable, the errors are distributed accross
multiple data blocks, increasing the chance of recovery (since each block can only correct one
bit).

(a) Empty (b) With data

Figure 5.2: Lycacode layout

5.3.4 Mask

As a last step, a mask is applied. The 8 masks are described in figure 5.3. The best fitting one
is selected based upon similar criteria as for QR-Codes4. Once applied to the data bits, the
mask’s id is encoded on the 3 reserved bits at the top and bottom of the code.

The purpose of masking in this context is purely aesthetical. It is a mean to avoid unpleasant

3Mini Lycacodes are not described here but are implemented in Python in the files lycacode_gen_mini.py and
lycacode_scanner_mini.py

4the exact criteria are defined in the python script lycacode_gen.py

Louis Heredero 5D 55/81 September 2022

CHAPTER 5. CUSTOM CODE 5.3. EXAMPLE

visual patterns in the final code.

(a) x mod 3 = 0 (b) y mod 3 = 0

(c) (x+y) mod 3 = 0 (d) (x mod 3)*(y mod 3) = 0

(e) (y//3+x//3) mod 2 = 0
(f) [(y mod 3)-1]*[(x mod 3)-(y mod

3)-2]*[(y mod 3)-(x mod 3)-2] = 0

(g) (|13-x|+|13-y|) mod 3 = 1
(h) [1-(x mod 2) + max(0, |13-y|-|13-x|)] *

[1-(y mod 2) + max(0,|13-x|-|13-y|)] = 0

Figure 5.3: Lycacode masks

Note: ”//” is integer division

For our example, the best mask is mask 3. The final binary matrix is shown in figure 5.4.

Louis Heredero 5D 56/81 September 2022

CHAPTER 5. CUSTOM CODE 5.3. EXAMPLE

Figure 5.4: Lycacode example: masked matrix

Finally, the matrix is converted to white dots (for 1s) on the red trefoil cross shown in figure
5.1, giving the final code in figure 5.5.

Figure 5.5: Lycacode example: final code

The external square is used to detect the code and to correct perspective. Its position and
dimensions, which have been chosen quite arbitrarily, are visualized on figure 5.6. In fact, only
the position and size of the inner border is relevant in the decoding process.

Louis Heredero 5D 57/81 September 2022

CHAPTER 5. CUSTOM CODE 5.3. EXAMPLE

Figure 5.6: Lycacode frame dimensions

Louis Heredero 5D 58/81 September 2022

Chapter 6

Conclusion

We have seen how engineers such as Woodland and Silver have built the basis for a barcode
system that optimises many processes, and how these barcodes provide an easy, fast and re-
liable way of encoding data. These values, ease of use, speed and reliability, are most cer-
tainly what the development of new technologies is all about. The sheer number of barcodes
currently in use around the world is proof of their ingenuity. Following the same success,
QR-Codes conquered the world and became part of our daily lives as we encounter them ev-
erywhere.

Because they have become standard elements in our society, they are often disregarded and
wrapped in mystery, like magical tags instantly recognizable by our devices. This work is obvi-
ously not an exhaustive list of all codes that exist. Many other types can be commonly found,
such as PDF-417 or Aztec codes, both of which also use the Reed-Solomon algorithm for error-
correction, or Postnet, a specialized type of barcodes used by theUnited States Postal Service.

The Lycacode described in chapter 5 was primarily designed for education purposes, as a way
to put in practice the formerly explained principles, but could well have a real application in
the Collège.

59

Chapter 7

Personal review

My interest for computers and programming has led me to choose this topic for my work and
it is not a choice I regret.

QR-Codeswerea subject I personallywanted tounderstand for some timebutnevergot round
to it. Having the possibility to usemy knowledge in Python to applywhat I had researchedwas
also very satisfying and self-rewarding. I hope I succeeded in trying to explain the inner work-
ings and principles making these great inventions possible. I appreciated the great freedom
both on the subject’s choice and the realization. Apart from learning about barcodes and QR-
Codes, I have also had the opportunity to put to use my English language skills. Using LATEX
helped practising problem solving as many things can be done in multiple ways and I needed
to find the best or easiest method, especially regarding tables.

The Python scripts also represent a great part of this work. While not perfect implementa-
tions, they offer a better understanding of the sometimes abstract concepts discussed and
allow the generation steps to be visualized personally, using any value.

Overall, I am pleased with the fruit of my research and understanding. My only regret would
be that I have not yet been able to fully understand the intricacies of Reed-Solomon codes,
but I hope that one day I will.

Finally, I would like to thank Mr. Erspamer for his availability, his support and his insightful
feedbacks. I must also credit my brother, who allowed me to obtain some documents such as
the ISO standards[5][4] and who helped with the printing of my work.

60

Bibliography

[1] Computerphile.Reed Solomon Encoding - Computerphile. en. 20th Feb. 2019. URL: https:
//www.youtube.com/watch?v=fBRMaEAFLE0.

[2] William A. Geisel. Tutorial on Reed-Solomon Error Correction Coding. en. Tech. rep. NASA
Lyndon B. Johnson Space Center Houston, TX, United States, 1st Aug. 1990. URL: https:
//ntrs.nasa.gov/api/citations/19900019023/downloads/19900019023.pdf.

[3] History ofQRCode. en.URL: https://www.qrcode.com/en/history/ (visitedon06/04/2022).

[4] Information technology — Automatic identification and data capture techniques — Bar
code symbology — QR Code. Standard. International Organization for Standardization,
2015. URL: https://www.iso.org/standard/62021.html.

[5] Information technology — Automatic identification and data capture techniques — Code
39 bar code symbology specification. Standard. International Organization for Standard-
ization, 2007. URL: https://www.iso.org/standard/43897.html.

[6] George Markowsky. information theory. Ed. by Encyclopedia Britannica. URL: https://
www.britannica.com/science/information-theory (visited on 04/09/2022).

[7] I. S. Reed and G. Solomon. ‘Polynomial Codes Over Certain Finite Fields’. In: Journal of
the Society for Industrial and AppliedMathematics 8.2 (1960), pp. 300–304. DOI: 10.1137/
0108018. eprint: https://doi.org/10.1137/0108018. URL: https://doi.org/10.1137/
0108018.

[8] Wikipedia contributors. Chien search — Wikipedia, The Free Encyclopedia. 2020. URL:
https://en.wikipedia.org/w/index.php?title=Chien_search&oldid=990999150

(visited on 03/09/2022).

[9] Wikipedia contributors. Hamming code — Wikipedia, The Free Encyclopedia. 2022. URL:
https://en.wikipedia.org/w/index.php?title=Hamming_code&oldid=1065900025

(visited on 15/08/2022).

[10] Wikipedia contributors. KarTrak — Wikipedia, The Free Encyclopedia. 2021. URL: https:
/ / en . wikipedia . org / w / index . php ? title = KarTrak & oldid = 1037680217 (visited on
15/08/2022).

[11] Wikipedia Contributors.Reed–Solomon error correction—Wikipedia, The Free Encyclope-
dia. 2022. URL: https://en.wikipedia.org/w/index.php?title=Reed%E2%80%93Solomon_
error_correction&oldid=1100051467 (visited on 03/08/2022).

[12] Wikiversity.Reed–Solomoncodes for coders—Wikiversity,2022.URL: https://en.wikiversity.
org/w/index.php?title=Reed–Solomon_codes_for_coders&oldid=2387659 (visited on
06/04/2022).

61

https://www.youtube.com/watch?v=fBRMaEAFLE0
https://www.youtube.com/watch?v=fBRMaEAFLE0
https://ntrs.nasa.gov/api/citations/19900019023/downloads/19900019023.pdf
https://ntrs.nasa.gov/api/citations/19900019023/downloads/19900019023.pdf
https://www.qrcode.com/en/history/
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/43897.html
https://www.britannica.com/science/information-theory
https://www.britannica.com/science/information-theory
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://en.wikipedia.org/w/index.php?title=Chien_search&oldid=990999150
https://en.wikipedia.org/w/index.php?title=Hamming_code&oldid=1065900025
https://en.wikipedia.org/w/index.php?title=KarTrak&oldid=1037680217
https://en.wikipedia.org/w/index.php?title=KarTrak&oldid=1037680217
https://en.wikipedia.org/w/index.php?title=Reed%E2%80%93Solomon_error_correction&oldid=1100051467
https://en.wikipedia.org/w/index.php?title=Reed%E2%80%93Solomon_error_correction&oldid=1100051467
https://en.wikiversity.org/w/index.php?title=ReedSolomon_codes_for_coders&oldid=2387659
https://en.wikiversity.org/w/index.php?title=ReedSolomon_codes_for_coders&oldid=2387659

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Norman Woodland and Bernard Silver. EN. U.S. pat. 2612994. Oct. 1952. URL: https://
worldwide.espacenet.com/patent/search/family/022402610/publication/US2612994A?

q=pn%3DUS2612994.

Louis Heredero 5D 62/81 September 2022

https://worldwide.espacenet.com/patent/search/family/022402610/publication/US2612994A?q=pn%3DUS2612994
https://worldwide.espacenet.com/patent/search/family/022402610/publication/US2612994A?q=pn%3DUS2612994
https://worldwide.espacenet.com/patent/search/family/022402610/publication/US2612994A?q=pn%3DUS2612994

Appendix A

Python code base display module

All figures, LATEX and Python files are available on the dedicated GitHub repository1

This module is used by the other generator scripts to display codes.

base.py

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

This module provides a base class to display codes and enable saving

(C) 2022 Louis Heredero louis.heredero@edu.vs.ch

"""

import pygame

class Base:

def __init__(self, width, height, caption):

pygame.init()

pygame.display.set_caption(caption)

self.w = pygame.display.set_mode([width, height])

self.controls([

"CTRL + S: save as",

"ESC: quit"

])

1https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022

63

https://github.com/LordBaryhobal/5D_Heredero_Louis_TM2022

APPENDIX A. PYTHON CODE BASE DISPLAY MODULE

def controls(self, controls, margin=2):

longest = max(list(map(len, controls))+[10])

print("┌─" + "─"*(longest+margin) + "─┐")

_ = "\x1b[1;4mControls:\x1b[0m"

_ += " "*(longest+margin-9)

print(f"│ " + _ + " │")

for c in controls:

print("│ " + " "*margin + c.ljust(longest) + " │")

print("└─" + "─"*(longest+margin) + "─┘")

def main(self):

pygame.display.flip()

stop = False

while not stop:

event = pygame.event.wait()

ESC or close button -> quit

if event.type == pygame.QUIT:

stop = True

elif event.type == pygame.KEYDOWN:

if event.key == pygame.K_ESCAPE:

stop = True

CTRL+S -> save image

elif event.key == pygame.K_s and \

event.mod & pygame.KMOD_CTRL:

self.save()

def save(self):

path = input("Save as: ")

pygame.image.save(self.w, path)

Louis Heredero 5D 64/81 September 2022

Appendix B

Code 39 python implementation

code39.py

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

This module can generate Code-39 barcodes

(C) 2022 Louis Heredero louis.heredero@edu.vs.ch

"""

import pygame

code39_dict = {

"A": "100001001", "B": "001001001",

"C": "101001000", "D": "000011001",

"E": "100011000", "F": "001011000",

"G": "000001101", "H": "100001100",

"I": "001001100", "J": "000011100",

"K": "100000011", "L": "001000011",

"M": "101000010", "N": "000010011",

"O": "100010010", "P": "001010010",

"Q": "000000111", "R": "100000110",

"S": "001000110", "T": "000010110",

"U": "110000001", "V": "011000001",

"W": "111000000", "X": "010010001",

"Y": "110010000", "Z": "011010000",

"0": "000110100", "1": "100100001",

"2": "001100001", "3": "101100000",

"4": "000110001", "5": "100110000",

"6": "001110000", "7": "000100101",

65

APPENDIX B. CODE 39 PYTHON IMPLEMENTATION

"8": "100100100", "9": "001100100",

" ": "011000100", "-": "010000101",

"$": "010101000", "%": "000101010",

".": "110000100", "/": "010100010",

"+": "010001010", "*": "010010100"

}

def code39(text):

text = text.upper()

text = list(map(lambda c: code39_dict[c], text))

return "0".join(text)

def draw_barcode(barcode, win):

barcode = list(map(int, barcode))

width = win.get_width()*0.8

height = win.get_height()*0.5

thicks = sum(barcode)

thins = len(barcode)-thicks

bar_w = width/(thicks*2+thins)

win.fill((255,255,255))

x = win.get_width()*0.1

y = win.get_height()*0.25

for i, c in enumerate(barcode):

w = 2*bar_w if c else bar_w

if i%2 == 0:

pygame.draw.rect(win, (0,0,0), [x, y, w, height])

x += w

if __name__ == "__main__":

import base

b = base.Base(800, 500, "Code-39 barcode generator")

barcode = code39("*CODE-39*")

draw_barcode(barcode, b.w)

b.main()

Louis Heredero 5D 66/81 September 2022

Appendix C

EAN python implementation

ean.py

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

This module can generate EAN-8 and EAN-13 barcodes

(C) 2022 Louis Heredero louis.heredero@edu.vs.ch

"""

import pygame

A = [

0b0001101,

0b0011001,

0b0010011,

0b0111101,

0b0100011,

0b0110001,

0b0101111,

0b0111011,

0b0110111,

0b0001011

]

XOR 0b1111111

C = list(map(lambda a: a^127, A))

Reverse bit order

B = list(map(lambda c: int(f"{c:07b}"[::-1],2), C))

67

APPENDIX C. EAN PYTHON IMPLEMENTATION

ean13_patterns = [

"AAAAAA",

"AABABB",

"AABBAB",

"AABBBA",

"ABAABB",

"ABBAAB",

"ABBBAA",

"ABABAB",

"ABABBA",

"ABBABA"

]

def bin_list(n):

return list(map(int,f"{n:07b}"))

def luhn(digits):

checksum = sum([

digits[-i-1]*(3-i%2*2)

for i in range(len(digits))

])

ctrl_key = 10 - checksum%10

if ctrl_key == 10:

ctrl_key = 0

return ctrl_key

def ean8(digits):

digits.append(luhn(digits))

elmts = []

elmts += [1,0,1] #delimiter

for digit in digits[:4]:

elmts += bin_list(A[digit])

elmts += [0,1,0,1,0] #middle delimiter

for digit in digits[4:]:

elmts += bin_list(C[digit])

elmts += [1,0,1] #delimiter

return elmts

def ean13(digits):

pattern = ean13_patterns[digits[0]]

digits.append(luhn(digits))

elmts = []

Louis Heredero 5D 68/81 September 2022

APPENDIX C. EAN PYTHON IMPLEMENTATION

elmts += [1,0,1] #delimiter

for d in range(1,7):

_ = A if pattern[d-1] == "A" else B

digit = digits[d]

elmts += bin_list(_[digit])

elmts += [0,1,0,1,0] #middle delimiter

for digit in digits[7:]:

elmts += bin_list(C[digit])

elmts += [1,0,1] #delimiter

return elmts

def draw_barcode(barcode, win):

width = win.get_width()*0.8

height = win.get_height()*0.5

bar_w = width/len(barcode)

rnd_bar_w = round(bar_w)

win.fill((255,255,255))

x = win.get_width()*0.1

y = win.get_height()*0.25

for c in barcode:

if c:

pygame.draw.rect(win, (0,0,0), [x, y, rnd_bar_w, height])

x += bar_w

if __name__ == "__main__":

import base

b = base.Base(800, 500, "EAN-8 / EAN-13 barcode generator")

#barcode = ean8([8,4,2,7,3,7,2])

barcode = ean13([9,7,8,2,9,4,0,6,2,1,0,5])

draw_barcode(barcode, b.w)

b.main()

Louis Heredero 5D 69/81 September 2022

Appendix D

QR-Code tables

Index Char Index Char Index Char

0 0 15 F 30 U

1 1 16 G 31 V

2 2 17 H 32 W

3 3 18 I 33 X

4 4 19 J 34 Y

5 5 20 K 35 Z

6 6 21 L 36 space

7 7 22 M 37 $

8 8 23 N 38 %

9 9 24 O 39 *

10 A 25 P 40 +

11 B 26 Q 41 -

12 C 27 R 42 .

13 D 28 S 43 /

14 E 29 T 44 :

Table D.1: List of alphanumerical characters

70

APPENDIX D. QR-CODE TABLES

Table D.2: Version capacities

Version Correction level Numerical Alphanumerical Byte Kanji

1

L 41 25 17 10

M 34 20 14 8

Q 27 16 11 7

H 17 10 7 4

2

L 77 47 32 20

M 63 38 26 16

Q 48 29 20 12

H 34 20 14 8

3

L 127 77 53 32

M 101 61 42 26

Q 77 47 32 20

H 58 35 24 15

4

L 187 114 78 48

M 149 90 62 38

Q 111 67 46 28

H 82 50 34 21

5

L 255 154 106 65

M 202 122 84 52

Q 144 87 60 37

H 106 64 44 27

6

L 322 195 134 82

M 255 154 106 65

Q 178 108 74 45

H 139 84 58 36

7

L 370 224 154 95

M 293 178 122 75

Q 207 125 86 53

H 154 93 64 39

8

L 461 279 192 118

M 365 221 152 93

Q 259 157 108 66

H 202 122 84 52

9

L 552 335 230 141

M 432 262 180 111

Q 312 189 130 80

H 235 143 98 60

Continued on next page

Louis Heredero 5D 71/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

10

L 652 395 271 167

M 513 311 213 131

Q 364 221 151 93

H 288 174 119 74

11

L 772 468 321 198

M 604 366 251 155

Q 427 259 177 109

H 331 200 137 85

12

L 883 535 367 226

M 691 419 287 177

Q 489 296 203 125

H 374 227 155 96

13

L 1022 619 425 262

M 796 483 331 204

Q 580 352 241 149

H 427 259 177 109

14

L 1101 667 458 282

M 871 528 362 223

Q 621 376 258 159

H 468 283 194 120

15

L 1250 758 520 320

M 991 600 412 254

Q 703 426 292 180

H 530 321 220 136

16

L 1408 854 586 361

M 1082 656 450 277

Q 775 470 322 198

H 602 365 250 154

17

L 1548 938 644 397

M 1212 734 504 310

Q 876 531 364 224

H 674 408 280 173

18

L 1725 1046 718 442

M 1346 816 560 345

Q 948 574 394 243

H 746 452 310 191

Continued on next page

Louis Heredero 5D 72/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

19

L 1903 1153 792 488

M 1500 909 624 384

Q 1063 644 442 272

H 813 493 338 208

20

L 2061 1249 858 528

M 1600 970 666 410

Q 1159 702 482 297

H 919 557 382 235

21

L 2232 1352 929 572

M 1708 1035 711 438

Q 1224 742 509 314

H 969 587 403 248

22

L 2409 1460 1003 618

M 1872 1134 779 480

Q 1358 823 565 348

H 1056 640 439 270

23

L 2620 1588 1091 672

M 2059 1248 857 528

Q 1468 890 611 376

H 1108 672 461 284

24

L 2812 1704 1171 721

M 2188 1326 911 561

Q 1588 963 661 407

H 1228 744 511 315

25

L 3057 1853 1273 784

M 2395 1451 997 614

Q 1718 1041 715 440

H 1286 779 535 330

26

L 3283 1990 1367 842

M 2544 1542 1059 652

Q 1804 1094 751 462

H 1425 864 593 365

27

L 3517 2132 1465 902

M 2701 1637 1125 692

Q 1933 1172 805 496

H 1501 910 625 385

Continued on next page

Louis Heredero 5D 73/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

28

L 3669 2223 1528 940

M 2857 1732 1190 732

Q 2085 1263 868 534

H 1581 958 658 405

29

L 3909 2369 1628 1002

M 3035 1839 1264 778

Q 2181 1322 908 559

H 1677 1016 698 430

30

L 4158 2520 1732 1066

M 3289 1994 1370 843

Q 2358 1429 982 604

H 1782 1080 742 457

31

L 4417 2677 1840 1132

M 3486 2113 1452 894

Q 2473 1499 1030 634

H 1897 1150 790 486

32

L 4686 2840 1952 1201

M 3693 2238 1538 947

Q 2670 1618 1112 684

H 2022 1226 842 518

33

L 4965 3009 2068 1273

M 3909 2369 1628 1002

Q 2805 1700 1168 719

H 2157 1307 898 553

34

L 5253 3183 2188 1347

M 4134 2506 1722 1060

Q 2949 1787 1228 756

H 2301 1394 958 590

35

L 5529 3351 2303 1417

M 4343 2632 1809 1113

Q 3081 1867 1283 790

H 2361 1431 983 605

36

L 5836 3537 2431 1496

M 4588 2780 1911 1176

Q 3244 1966 1351 832

H 2524 1530 1051 647

Continued on next page

Louis Heredero 5D 74/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

37

L 6153 3729 2563 1577

M 4775 2894 1989 1224

Q 3417 2071 1423 876

H 2625 1591 1093 673

38

L 6479 3927 2699 1661

M 5039 3054 2099 1292

Q 3599 2181 1499 923

H 2735 1658 1139 701

39

L 6743 4087 2809 1729

M 5313 3220 2213 1362

Q 3791 2298 1579 972

H 2927 1774 1219 750

40

L 7089 4296 2953 1817

M 5596 3391 2331 1435

Q 3993 2420 1663 1024

H 3057 1852 1273 784

Table D.3: Error correction characteristics

V
e
rs
io
n

C
o
rr
e
ct
io
n
le
v
e
l

D
a
ta

co
d
e
w
o
rd
s

E
rr
o
r
co
rr
e
ct
io
n

co
d
e
w
o
rd
s
p
e
r
b
lo
ck

B
lo
ck
s
in
g
ro
u
p
1

D
a
ta

co
d
e
w
o
rd
s
p
e
r

g
ro
u
p
1
b
lo
ck
s

B
lo
ck
s
in
g
ro
u
p
2

D
a
ta

co
d
e
w
o
rd
s
p
e
r

g
ro
u
p
2
b
lo
ck
s

1

L 19 7 1 19 0 0

M 16 10 1 16 0 0

Q 13 13 1 13 0 0

H 9 17 1 9 0 0

2

L 34 10 1 34 0 0

M 28 16 1 28 0 0

Q 22 22 1 22 0 0

H 16 28 1 16 0 0

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

Continued on next page

Louis Heredero 5D 75/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

3

L 55 15 1 55 0 0

M 44 26 1 44 0 0

Q 34 18 2 17 0 0

H 26 22 2 13 0 0

4

L 80 20 1 80 0 0

M 64 18 2 32 0 0

Q 48 26 2 24 0 0

H 36 16 4 9 0 0

5

L 108 26 1 108 0 0

M 86 24 2 43 0 0

Q 62 18 2 15 2 16

H 46 22 2 11 2 12

6

L 136 18 2 68 0 0

M 108 16 4 27 0 0

Q 76 24 4 19 0 0

H 60 28 4 15 0 0

7

L 156 20 2 78 0 0

M 124 18 4 31 0 0

Q 88 18 2 14 4 15

H 66 26 4 13 1 14

8

L 194 24 2 97 0 0

M 154 22 2 38 2 39

Q 110 22 4 18 2 19

H 86 26 4 14 2 15

9

L 232 30 2 116 0 0

M 182 22 3 36 2 37

Q 132 20 4 16 4 17

H 100 24 4 12 4 13

10

L 274 18 2 68 2 69

M 216 26 4 43 1 44

Q 154 24 6 19 2 20

H 122 28 6 15 2 16

11

L 324 20 4 81 0 0

M 254 30 1 50 4 51

Q 180 28 4 22 4 23

H 140 24 3 12 8 13

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

Continued on next page

Louis Heredero 5D 76/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

12

L 370 24 2 92 2 93

M 290 22 6 36 2 37

Q 206 26 4 20 6 21

H 158 28 7 14 4 15

13

L 428 26 4 107 0 0

M 334 22 8 37 1 38

Q 244 24 8 20 4 21

H 180 22 12 11 4 12

14

L 461 30 3 115 1 116

M 365 24 4 40 5 41

Q 261 20 11 16 5 17

H 197 24 11 12 5 13

15

L 523 22 5 87 1 88

M 415 24 5 41 5 42

Q 295 30 5 24 7 25

H 223 24 11 12 7 13

16

L 589 24 5 98 1 99

M 453 28 7 45 3 46

Q 325 24 15 19 2 20

H 253 30 3 15 13 16

17

L 647 28 1 107 5 108

M 507 28 10 46 1 47

Q 367 28 1 22 15 23

H 283 28 2 14 17 15

18

L 721 30 5 120 1 121

M 563 26 9 43 4 44

Q 397 28 17 22 1 23

H 313 28 2 14 19 15

19

L 795 28 3 113 4 114

M 627 26 3 44 11 45

Q 445 26 17 21 4 22

H 341 26 9 13 16 14

20

L 861 28 3 107 5 108

M 669 26 3 41 13 42

Q 485 30 15 24 5 25

H 385 28 15 15 10 16

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

Continued on next page

Louis Heredero 5D 77/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

21

L 932 28 4 116 4 117

M 714 26 17 42 0 0

Q 512 28 17 22 6 23

H 406 30 19 16 6 17

22

L 1006 28 2 111 7 112

M 782 28 17 46 0 0

Q 568 30 7 24 16 25

H 442 24 34 13 0 0

23

L 1094 30 4 121 5 122

M 860 28 4 47 14 48

Q 614 30 11 24 14 25

H 464 30 16 15 14 16

24

L 1174 30 6 117 4 118

M 914 28 6 45 14 46

Q 664 30 11 24 16 25

H 514 30 30 16 2 17

25

L 1276 26 8 106 4 107

M 1000 28 8 47 13 48

Q 718 30 7 24 22 25

H 538 30 22 15 13 16

26

L 1370 28 10 114 2 115

M 1062 28 19 46 4 47

Q 754 28 28 22 6 23

H 596 30 33 16 4 17

27

L 1468 30 8 122 4 123

M 1128 28 22 45 3 46

Q 808 30 8 23 26 24

H 628 30 12 15 28 16

28

L 1531 30 3 117 10 118

M 1193 28 3 45 23 46

Q 871 30 4 24 31 25

H 661 30 11 15 31 16

29

L 1631 30 7 116 7 117

M 1267 28 21 45 7 46

Q 911 30 1 23 37 24

H 701 30 19 15 26 16

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

Continued on next page

Louis Heredero 5D 78/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

30

L 1735 30 5 115 10 116

M 1373 28 19 47 10 48

Q 985 30 15 24 25 25

H 745 30 23 15 25 16

31

L 1843 30 13 115 3 116

M 1455 28 2 46 29 47

Q 1033 30 42 24 1 25

H 793 30 23 15 28 16

32

L 1955 30 17 115 0 0

M 1541 28 10 46 23 47

Q 1115 30 10 24 35 25

H 845 30 19 15 35 16

33

L 2071 30 17 115 1 116

M 1631 28 14 46 21 47

Q 1171 30 29 24 19 25

H 901 30 11 15 46 16

34

L 2191 30 13 115 6 116

M 1725 28 14 46 23 47

Q 1231 30 44 24 7 25

H 961 30 59 16 1 17

35

L 2306 30 12 121 7 122

M 1812 28 12 47 26 48

Q 1286 30 39 24 14 25

H 986 30 22 15 41 16

36

L 2434 30 6 121 14 122

M 1914 28 6 47 34 48

Q 1354 30 46 24 10 25

H 1054 30 2 15 64 16

37

L 2566 30 17 122 4 123

M 1992 28 29 46 14 47

Q 1426 30 49 24 10 25

H 1096 30 24 15 46 16

38

L 2702 30 4 122 18 123

M 2102 28 13 46 32 47

Q 1502 30 48 24 14 25

H 1142 30 42 15 32 16

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

Continued on next page

Louis Heredero 5D 79/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

Ver Level Data CW EC CW /B Blocks G1 CW G1 Blocks G2 CW G2

39

L 2812 30 20 117 4 118

M 2216 28 40 47 7 48

Q 1582 30 43 24 22 25

H 1222 30 10 15 67 16

40

L 2956 30 19 118 6 119

M 2334 28 18 47 31 48

Q 1666 30 34 24 34 25

H 1276 30 20 15 61 16

Table D.4: Alignment pattern locations

Version Central x and y coordinates

1

2 6 18

3 6 22

4 6 26

5 6 30

6 6 34

7 6 22 38

8 6 24 42

9 6 26 46

10 6 28 50

11 6 30 54

12 6 32 58

13 6 34 62

14 6 26 46 66

15 6 26 48 70

16 6 26 50 74

17 6 30 54 78

18 6 30 56 82

19 6 30 58 86

20 6 34 62 90

21 6 28 50 72 94

22 6 26 50 74 98

Version Central x and y coordinates

Continued on next page

Louis Heredero 5D 80/81 September 2022

APPENDIX D. QR-CODE TABLES

Continued from last page

Version Central x and y coordinates

23 6 30 54 78 102

24 6 28 54 80 106

25 6 32 58 84 110

26 6 30 58 86 114

27 6 34 62 90 118

28 6 26 50 74 98 122

29 6 30 54 78 102 126

30 6 26 52 78 104 130

31 6 30 56 82 108 134

32 6 34 60 86 112 138

33 6 30 58 86 114 142

34 6 34 62 90 118 146

35 6 30 54 78 102 126 150

36 6 24 50 76 102 128 154

37 6 28 54 80 106 132 158

38 6 32 58 84 110 136 162

39 6 26 54 82 110 138 166

40 6 30 58 86 114 142 170

Louis Heredero 5D 81/81 September 2022

	Introduction
	Barcodes
	Origin
	How it works
	Code-39
	EAN

	Application in Python
	Code-39
	EAN-8
	EAN-13

	QR-Codes
	Origin
	How it works
	Data type
	Version
	Character count indicator
	Data encoding
	Error correction
	Interleaving
	Separators and finder patterns
	Alignment patterns
	Timing pattern
	Reserved area
	Data placement
	Masking
	Format information
	Version information

	Application in Python
	Python features
	Precomputed data
	Data placement
	Mask evaluation

	Error detection and correction
	Hamming Codes
	Reed-Solomon algorithm
	Error detection
	Binary to polynomials
	Galois Fields
	Generating error correction
	Detecting and correcting errors

	Custom code
	Encoding
	Person - mode 0
	Location - mode 1
	Link - mode 2
	Text - mode 3

	Error correction
	Example
	Data encoding
	Hamming codes
	Laying out data
	Mask

	Conclusion
	Personal review
	Bibliography
	Python code base display module
	Code 39 python implementation
	EAN python implementation
	QR-Code tables

