from math import inf from typing import Iterator, Optional from src.graph.node import Node from src.graph.edge import Edge class Graph: def __init__(self): self.edges: list[Edge] = [] self.nodes: list[Node] = [] def add_node(self, x: int, y: int, name: str) -> None: self.nodes.append(Node(x, y, name)) def add_edge(self, start_index: int, end_index: int, length: float) -> None: self.edges.append(Edge(start_index, end_index, length)) def number_of_nodes(self) -> int: return len(self.nodes) def get_edge(self, node_1: int, node_2: int) -> int: for edge in self.edges: if (edge.start == node_1 and edge.end == node_2) or (edge.start == node_2 and edge.end == node_1): return self.edges.index(edge) return -1 def get_edge_nodes(self, edge: Edge) -> tuple[Node, Node]: return self.nodes[edge.start], self.nodes[edge.end] def edges_adjacent_to(self, node_i: int) -> Iterator[Edge]: return filter(lambda e: e.start == node_i or e.end == node_i, self.edges) def edge_exists(self, node_1: int, node_2: int) -> bool: return self.get_edge(node_1, node_2) != -1 def dijkstra(self, source_index: int, target_index: int) -> Optional[list[int]]: n = len(self.nodes) if source_index < 0 or source_index >= n: return None if target_index < 0 or target_index >= n: return None unvisited = list(range(n)) distances_from_start = [inf] * n distances_from_start[source_index] = 0 node_sequences = [[] for _ in range(n)] node_sequences[source_index] = [source_index] while True: current_index = min(unvisited, key=lambda i: distances_from_start[i]) if current_index == target_index: break unvisited.remove(current_index) for edge in self.edges_adjacent_to(current_index): start = current_index end = edge.end if edge.start == current_index else edge.start if end in unvisited and distances_from_start[end] > distances_from_start[start] + edge.length: distances_from_start[end] = distances_from_start[start] + edge.length node_sequences[end] = node_sequences[start].copy() node_sequences[end].append(end) return node_sequences[target_index]