#include #include #include #define RR_QUANTUM 2 #define CNTXT_SWITCH 1 int MAX_PROCESSES = 0; enum pstate { WAITING, READY, RUNNING, FINISHED }; struct pinfo { int id; int arrival_time; int execution_time; int priority; int wait_time; int turnaround_time; int remaining_time; int nb_time_pre_empted; // Ajouté pour compter les préemptions enum pstate state; struct pinfo * next_pinfo; }; int n_processes(struct pinfo * head) { int n = 0; while (head != NULL) { n++; head = head->next_pinfo; } return n; } struct perf_info { int total_time; int total_nr_ctxt_switch; int total_time_ctxt_switch; }; void print_perf(struct perf_info * perf) { printf("Total time: %d\n", perf->total_time); printf("Total number of context switches: %d\n", perf->total_nr_ctxt_switch); printf("Total time spent on context switching: %d\n", perf->total_time_ctxt_switch); } void print_pinfo(struct pinfo * info) { printf("id); printf(" Arrival time: %d\n", info->arrival_time); printf(" Execution time: %d\n", info->execution_time); printf(" Priority: %d\n", info->priority); printf(" Wait time: %d\n", info->wait_time); printf(" Turnaround time: %d\n", info->turnaround_time); printf(" Remaining time: %d\n", info->remaining_time); printf(" NEXT -> %p\n", info->next_pinfo); printf("}>\n"); } void print_processes(struct pinfo * processes) { while (processes != NULL) { print_pinfo(processes); processes = processes->next_pinfo; } } struct pinfo * create_process(int id, int arrival_time, int execution_time, int priority) { struct pinfo * info = malloc(sizeof(struct pinfo)); info->id = id; info->arrival_time = arrival_time; info->execution_time = execution_time; info->priority = priority; info->wait_time = 0; info->turnaround_time = 0; info->remaining_time = execution_time; info->nb_time_pre_empted = 0; // Initialiser le nombre de préemptions info->state = WAITING; info->next_pinfo = NULL; return info; } // Méthode de planification FCFS struct perf_info schedule_FCFS(struct pinfo * processes) { int current_time = 0; struct pinfo * process = processes; struct perf_info perf = {0, 0, 0}; while (process != NULL) { int wait_time = current_time - process->arrival_time; if (wait_time < 0) { wait_time = 0; } process->wait_time = wait_time; process->turnaround_time = process->execution_time + process->wait_time; current_time = process->arrival_time + process->turnaround_time; process = process->next_pinfo; } perf.total_time = current_time; return perf; } struct prio_list { struct pinfo ** proc; int length; }; /** * Pops and returns the last element (highest priority) of the given priority list * * Returns NULL if the list is empty */ struct pinfo * prio_list_pop(struct prio_list * list) { if (list->length == 0) { return NULL; } list->length--; return *(list->proc + list->length); } /** * Adds the given process in the priority list at * the appropriate place (according to its priority) */ void prio_list_add(struct prio_list * list, struct pinfo * proc) { struct pinfo * proc2; int idx = 0; // Find first element (from the right) with lower priority for (int i=list->length-1; i>=0; i--) { proc2 = *(list->proc + i); if (proc2->priority > proc->priority) { idx = i+1; break; } } // Shift elements for (int j=list->length-1; j>=idx; j--) { *(list->proc + j + 1) = *(list->proc + j); } *(list->proc + idx) = proc; list->length++; } /** * Creates a new priority list */ struct prio_list * create_prio_list(int max_size) { struct pinfo ** processes = (struct pinfo **) malloc(sizeof(struct pinfo *) * max_size); struct prio_list * list = (struct prio_list *) malloc(sizeof(struct prio_list)); list->length = 0; list->proc = processes; return list; } /** * Returns the last element (highest priority) of the given priority list */ struct pinfo * prio_list_last(struct prio_list * list) { return *(list->proc + list->length - 1); } /** * Prints the pids of the processes in the given priority list */ void prio_list_print(struct prio_list * list) { printf("queue: "); for (int i=0; i < list->length; i++) { if (i != 0) { printf(", "); } printf("%d", (*(list->proc + i))->id); } printf("\n"); } struct perf_info schedule_Pr(struct pinfo * processes) { struct perf_info perf = {0, 0, 0}; int current_time = 0; struct pinfo * current = NULL; struct pinfo * next = processes; int N = n_processes(processes); printf("N = %d\n", N); struct prio_list * queue = create_prio_list(N); int finished = 0; while (finished != N) { printf("\nCurrent time: %d / ", current_time); if (current != NULL) { printf("Current: %d / ", current->id); } else { printf("Current: none / "); } if (next != NULL) { printf("Next: %d\n", next->id); } else { printf("Next: none\n"); } if (current == NULL) { printf("No running process: running %d\n", next->id); current = next; current->state = RUNNING; next = next->next_pinfo; } else if (next != NULL) { next->state = READY; prio_list_print(queue); printf("Processing next process (%d)\n", next->id); // If current finished before next while (current != NULL && current_time + current->remaining_time <= next->arrival_time) { printf(" Process %d finished before next\n", current->id); current->state = FINISHED; current_time += current->remaining_time; current->turnaround_time = current_time - current->arrival_time; current->remaining_time = 0; finished++; current = prio_list_pop(queue); } if (current != NULL) { printf("Removing time from current process\n"); current->remaining_time -= next->arrival_time - current_time; current->turnaround_time += next->arrival_time - current_time; } if (next->arrival_time > current_time) { current_time = next->arrival_time; } next->state = READY; // If no running process, immediately run next process if (current == NULL) { printf("Queue is empty, running next process %d\n", next->id); current = next; current->state = RUNNING; next = next->next_pinfo; } else if (next->priority < current->priority) { // Preempt current process printf("Next process (%d) has higher priority\n", next->id); if (current->state == RUNNING) { printf(" Preempting current process (%d)\n", current->id); current->nb_time_pre_empted++; current_time += CNTXT_SWITCH; perf.total_nr_ctxt_switch++; } current->state = READY; prio_list_add(queue, current); // Run process with higher priority current = next; current->state = RUNNING; next = next->next_pinfo; } else { printf("Adding next process (%d) to list\n", next->id); prio_list_add(queue, next); next = next->next_pinfo; } if (current != NULL) { current->state = RUNNING; } } else { printf("No new processes, emptying queue\n"); while (current != NULL) { printf("Completing process %d\n", current->id); current->state = FINISHED; current_time += current->remaining_time; current->turnaround_time = current_time - current->arrival_time; current->remaining_time = 0; finished++; current = prio_list_pop(queue); if (current != NULL) { current->state = RUNNING; } } } } perf.total_time = current_time; perf.total_time_ctxt_switch = perf.total_nr_ctxt_switch * CNTXT_SWITCH; return perf; } void compute_waiting_time(struct pinfo * processes) { while (processes != NULL) { processes->wait_time = processes->turnaround_time - processes->execution_time; processes = processes->next_pinfo; } } struct perf_info schedule_RR(struct pinfo *processes) { // Déclaration de la fonction schedule_RR qui prend un pointeur vers une liste de processus struct perf_info perf = {0, 0, 0}; // Initialisation de la structure de performance avec des valeurs à zéro int current_time = 0; // Variable pour suivre le temps actuel int finished_processes = 0; // Compteur pour le nombre de processus terminés while (finished_processes < MAX_PROCESSES) { // Boucle principale jusqu'à ce que tous les processus soient terminés int process_found = 0; // Indicateur pour savoir si un processus prêt a été trouvé struct pinfo *current_process = processes; // Pointeur pour parcourir la liste des processus while (current_process != NULL) { // Boucle pour parcourir tous les processus // Vérifiez si le processus est prêt à s'exécuter if (current_process->state != FINISHED && current_process->arrival_time <= current_time) { // Vérifie si le processus n'est pas fini et est arrivé process_found = 1; // Un processus prêt à s'exécuter a été trouvé int time_slice = (current_process->remaining_time < RR_QUANTUM) ? current_process->remaining_time : RR_QUANTUM; // Calcule la tranche de temps à exécuter // Simuler l'exécution current_time += time_slice; // Incrémente le temps actuel par la tranche de temps current_process->remaining_time -= time_slice; // Diminue le temps restant du processus // Calculer les temps d'attente pour les autres processus struct pinfo *other_process = processes; // Pointeur pour parcourir à nouveau la liste des processus while (other_process != NULL) { // Boucle pour parcourir tous les autres processus if (other_process->state != FINISHED && other_process != current_process && other_process->arrival_time <= current_time) { // Vérifie si l'autre processus est prêt other_process->wait_time += time_slice; // Augmente le temps d'attente des autres processus } other_process = other_process->next_pinfo; // Passe au processus suivant } // Gérer les statistiques de préemption if (current_process->remaining_time == 0) { // Vérifie si le processus est terminé current_process->state = FINISHED; // Met à jour l'état du processus à fini finished_processes++; // Incrémente le compteur de processus terminés current_process->turnaround_time = current_time - current_process->arrival_time; // Calcule le temps de turnaround } else { // Incrémenter le nombre de préemptions current_process->nb_time_pre_empted++; // Incrémente le compteur de préemptions pour le processus actuel perf.total_nr_ctxt_switch++; // Incrémente le nombre total de commutations de contexte } // Débogage : Afficher les informations du processus printf("Processus %d: remaining_time=%d, nb_time_pre_empted=%d\n", // Affiche les informations de débogage pour le processus actuel current_process->id, current_process->remaining_time, current_process->nb_time_pre_empted); } current_process = current_process->next_pinfo; // Passe au processus suivant dans la liste } if (!process_found) { // Vérifie si aucun processus prêt n'a été trouvé // Aucun processus prêt, avancer le temps current_time++; // Incrémente le temps actuel si aucun processus n'est prêt } } perf.total_time = current_time; // Enregistre le temps total écoulé dans la structure de performance return perf; // Renvoie la structure de performance } void write_file(struct pinfo * process, struct perf_info * perf) { FILE *myStream_execution = fopen("executionRR1.csv", "w"); FILE *myStream_performance = fopen("performanceRR1.csv", "w"); if (myStream_execution == NULL || myStream_performance == NULL) { perror("Erreur à l'ouverture des fichiers"); return; } while (process != NULL) { fprintf(myStream_execution, "%d,%d,%d,%d\n", process->id, process->turnaround_time, process->wait_time, process->nb_time_pre_empted); process = process->next_pinfo; } fclose(myStream_execution); fprintf(myStream_performance, "%d,%d,%d\n", perf->total_time, perf->total_nr_ctxt_switch, perf->total_time_ctxt_switch); fclose(myStream_performance); } struct pinfo * read_file() { FILE * file = fopen("tasks.csv", "r"); unsigned long buf_size = sizeof(char) * 64; char * line = (char *) malloc(buf_size); char * pid_str; char * arrival_str; char * execution_str; char * prio_str; struct pinfo * first = NULL; struct pinfo * last = NULL; struct pinfo * process; while (fgets(line, buf_size, file)) { MAX_PROCESSES += 1; pid_str = strtok(line, " "); arrival_str = strtok(NULL, " "); execution_str = strtok(NULL, " "); prio_str = strtok(NULL, " "); process = create_process( atoi(pid_str), atoi(arrival_str), atoi(execution_str), atoi(prio_str) ); // Si la liste n'est pas initialisée if (first == NULL) { first = process; } // Si un élément est déjà dans la liste if (last != NULL) { last->next_pinfo = process; } last = process; print_pinfo(process); } free(line); fclose(file); printf("Maximum des processus : %d\n", MAX_PROCESSES); return first; } void free_processes(struct pinfo * next) { struct pinfo * cur; while (next != NULL) { cur = next; next = cur->next_pinfo; free(cur); } } int main() { struct pinfo * processes = read_file(); //struct perf_info perf = schedule_FCFS(processes); struct perf_info perf = schedule_RR(processes); //struct perf_info perf = schedule_Pr(processes); compute_waiting_time(processes); write_file(processes, &perf); free_processes(processes); return 0; }