#include #include #include #define RR_QUANTUM 2 #define CNTXT_SWITCH 1 enum pstate { WAITING, READY, FINISHED }; struct pinfo { int id; int arrival_time; int execution_time; int priority; int wait_time; int turnaround_time; int remaining_time; enum pstate state; struct pinfo * next_pinfo; }; struct perf_info { int total_time; int total_nr_ctxt_switch; int total_time_ctxt_switch; }; void print_perf(struct perf_info * perf) { printf("Total time: %d\n", perf->total_time); printf("Total number of context switches: %d\n", perf->total_nr_ctxt_switch); printf("Total time spent on context switching: %d\n", perf->total_time_ctxt_switch); } void print_pinfo(struct pinfo * info) { printf("id); printf(" Arrival time: %d\n", info->arrival_time); printf(" Execution time: %d\n", info->execution_time); printf(" Priority: %d\n", info->priority); printf(" Wait time: %d\n", info->wait_time); printf(" Turnaround time: %d\n", info->turnaround_time); printf(" Remaining time: %d\n", info->remaining_time); printf(" NEXT -> %p\n", info->next_pinfo); printf("}>\n"); } void print_processes(struct pinfo * processes) { while (processes != NULL) { print_pinfo(processes); processes = processes->next_pinfo; } } struct pinfo * create_process(int id, int arrival_time, int execution_time, int priority) { struct pinfo * info = malloc(sizeof(struct pinfo)); info->id = id; info->arrival_time = arrival_time; info->execution_time = execution_time; info->priority = priority; info->wait_time = 0; info->turnaround_time = 0; info->remaining_time = execution_time; info->state = WAITING; info->next_pinfo = NULL; return info; } struct perf_info schedule_FCFS(struct pinfo * processes) { int current_time = 0; struct pinfo * process = processes; struct perf_info perf = {0, 0, 0}; while (process != NULL) { int wait_time = current_time - process->arrival_time; if (wait_time < 0) { wait_time = 0; } process->wait_time = wait_time; process->turnaround_time = process->execution_time + process->wait_time; current_time = process->arrival_time + process->turnaround_time; process = process->next_pinfo; } perf.total_time = current_time; return perf; } struct pinfo * read_file() { FILE * file = fopen("tasks.csv", "r"); unsigned long buf_size = sizeof(char) * 64; char * line = (char *) malloc(buf_size); char * pid_str; char * arrival_str; char * execution_str; char * prio_str; struct pinfo * first = NULL; struct pinfo * last = NULL; struct pinfo * process; while (fgets(line, buf_size, file)) { pid_str = strtok(line, " "); arrival_str = strtok(NULL, " "); execution_str = strtok(NULL, " "); prio_str = strtok(NULL, " "); process = create_process( atoi(pid_str), atoi(arrival_str), atoi(execution_str), atoi(prio_str) ); // If linked list not initialized if (first == NULL) { first = process; } // If there is an element in list if (last != NULL) { last->next_pinfo = process; } last = process; print_pinfo(process); } free(line); fclose(file); return first; } void free_processes(struct pinfo * next) { struct pinfo * cur; while (next != NULL) { cur = next; next = cur->next_pinfo; free(cur); } } void write_file(struct pinfo * process, struct perf_info * perf) { FILE *myStream_execution = fopen("execution2.csv", "w"); FILE *myStream_performance = fopen("performance2.csv", "w"); if (myStream_execution == NULL || myStream_performance == NULL) { perror("Erreur à l'ouverture des fichiers"); return; } while (process != NULL) { fprintf(myStream_execution, "%d,%d,%d,%d\n", // Ajout de la colonne des préemptions process->id, process->turnaround_time, process->wait_time, process->execution_time - process->remaining_time); // Nombre de préemptions process = process->next_pinfo; } fclose(myStream_execution); fprintf(myStream_performance, "%d,%d,%d\n", perf->total_time, perf->total_nr_ctxt_switch, perf->total_time_ctxt_switch); fclose(myStream_performance); } struct perf_info schedule_RR(struct pinfo * processes) { int current_time = 0; // Temps actuel int context_switches = 0; // Nombre de changements de contexte struct perf_info perf = {0, 0, 0}; struct pinfo * queue = processes; // File d'attente de processus struct pinfo * temp; // Variable temporaire pour itérer while (1) { int all_done = 1; // Vérifier si tous les processus sont terminés // Itérer sur les processus dans la queue temp = queue; while (temp != NULL) { // Vérifiez si le processus a encore du temps restant if (temp->remaining_time > 0) { all_done = 0; // Il y a au moins un processus qui n'est pas terminé // Si le temps actuel est inférieur au temps d'arrivée if (current_time < temp->arrival_time) { current_time = temp->arrival_time; // Mettez à jour le temps } // Exécutez le processus pendant le quantum if (temp->remaining_time > RR_QUANTUM) { current_time += RR_QUANTUM; // Ajoute le quantum au temps temp->remaining_time -= RR_QUANTUM; // Diminue le temps restant context_switches++; // Compter le changement de contexte } else { // Le processus se termine ici current_time += temp->remaining_time; // Ajoutez le temps restant à current_time temp->turnaround_time = current_time - temp->arrival_time; // Calculer le TAT temp->wait_time += (temp->turnaround_time - temp->execution_time); // Calculer le WT temp->remaining_time = 0; // Le processus est terminé temp->state = FINISHED; // Marquez comme terminé } } temp = temp->next_pinfo; // Passer au processus suivant } // Réinitialiser la file d'attente temp = processes; // Revenir au début de la liste struct pinfo * last = NULL; // Pour maintenir la fin de la queue // Créer une nouvelle file d'attente while (temp != NULL) { // Ne pas ajouter les processus terminés à la nouvelle queue if (temp->remaining_time > 0) { if (last == NULL) { queue = temp; // Premier processus dans la nouvelle queue } else { last->next_pinfo = temp; // Ajouter à la fin } last = temp; // Mettre à jour le dernier élément de la queue } temp = temp->next_pinfo; // Passer au processus suivant } if (last != NULL) { last->next_pinfo = NULL; // Terminer la liste } // Si tous les processus sont terminés, sortez de la boucle if (all_done) { break; } } // Mise à jour des statistiques de performance perf.total_time = current_time; // Total du temps écoulé perf.total_nr_ctxt_switch = context_switches; // Total des changements de contexte perf.total_time_ctxt_switch = context_switches * CNTXT_SWITCH; // Temps total pour les changements de contexte return perf; // Retournez les performances } int main() { struct pinfo * processes = read_file(); //struct perf_info perf = schedule_FCFS(processes); struct perf_info perf = schedule_RR(processes); write_file(processes, &perf); //print_processes(processes); //print_perf(&perf); free_processes(processes); return 0; }