Chronos

v0.3.0

]

User HEDAPE Typst Universe

Compile document !

\

Fetch Chronos

1
I
I
I
I
I
I
»
>,

Contents

1 o e 13 ot o3 T 3
B U LT . P 3
T o= Y0 110 U= 3
3.1 SOME BrouPS aNd SEQUENCESt ettt ettt et et e et e e et et et e e e e ee e eneenennens 3
302 LIfEliNES ettt s 4
3.3 FouNd and l0St MESSaBES . . . v ettt ettt et ettt 5
B O D11 o g I 4= =3 6
O S =T T T 7
O R - T o] o 7= | = 7
o | 7

O 0 o T 8

40,3 SHAPES L. e 9
Y=o [81T Lol] P 10
0 R -V P 10
T~ T« [10

0 T (= VS 13

4.2.4 comment-align .. couuent e 14

42,5 EVENT S e e e e 14

0 T o33 14

G T 1 0 U] o33 16
G 700 . o 1 16

G 707 17

30 T8 TR Uo Yo Y o 18

G FR 1Y/ o T 19

G T8 T o o 1 P 19

4,306 L DrEaK . e 20

4.4 GapS and SEPaAratorsttt e e 21
ST T 21

Ao 1= - Y 21

N T - o 22

4D N S .ttt 24
R 708 R 0T 24

4. 5.2 SHAPES .. 25

4.5.3 SIDES . e 25

chronos —v0.3.0

1 Introduction

This package lets you create nice sequence diagrams using the CeTZ package.

2 Usage

Simply import chronos and call the diagram function:

1 #import "@preview/chronos:0.3.0"
2 #chronos.diagram({

3 import chronos: *
4
5

})

3 Examples
You can find the following examples and more in the gallery directory

3.1 Some groups and sequences

@ Typst

3 Authentication Request

I I
I I
“ !
Ll I
I I
I I
I I
i I

. _ Authentication Failure

My own label) [My own label2]

' Log attack start

loop) [1000 times]

' DNS Attack

>

\ J

>

3 Log attack end

1 chronos.diagram({

2 import chronos: *

3 _seq("Alice", "Bob", comment: "Authentication Request")
4 _seq("Bob", "Alice", comment: "Authentication Failure")
5

6 _grp("My own label", desc: "My own label2", {

7 _seq("Alice", "Log", comment: "Log attack start")

8 ~grp("loop", desc: "1000 times", {

9 _seq("Alice", "Bob", comment: "DNS Attack")

10 1)

11 _seq("Alice", "Bob", comment: "Log attack end")

12 })

13 1)

O Typst

3/26

https://typst.app/universe/package/chronos/
https://git.kb28.ch/HEL/chronos/src/branch/main/gallery

chronos —v0.3.0

3.2 Lifelines

r

[alice] [bob]

| hello o |

! self call !

l < l

3 _ hello from thread 2 1

| create . _|george
1 doneinthread2 |

| rc l

3 delete : ;(
‘_S_QF_CES_?_,J }

true, dashed: true)

[alice] [bob]
1 chronos.diagram({
2 import chronos: *
3 _seq("alice", "bob", comment: "hello", enable-dst: true)
4 _seq("bob", "bob", comment: "self call", enable-dst: true)
5 _seq(
6 "bill", "bob",
7 comment: "hello from thread 2",
8 enable-dst: true,
9 lifeline-style: (fill: rgb("#005500"))
10)
11 _seq("bob", "george", comment: "create", create-dst: true)
12 _seq(
13 "bob", "bill",
14 comment: "done in thread 2",
15 disable-src: true,
16 dashed: true
17)
18 _seq("bob", "bob", comment: "rc", disable-src: true, dashed: true)
19 _seq("bob", "george", comment: "delete", destroy-dst: true)
20 ~seq("bob", "alice", comment: "success", disable-src:
21 1)

4/26

chronos —v0.3.0

3.3 Found and lost messages

r

I
2-> |
I
I

short to actorl

[-> ! !
from start to actorl »} 3
[-> 1 1
from start to actor2 ! »}
B 3
| short to actor2 >
->] !
' from actorl to end |
; —
: ->? :
'short from actorl > }
3
. from actorl to actor2 »l
1 chronos.diagram({ @ Typst
2 import chronos: *
3 _seq("?", "Alice", comment: [?->\ *short* to actorl])
4 _seq("[", "Alice", comment: [\[->\ *from start* to actorl])
5 _seq("[", "Bob", comment: [\[->\ *from start* to actor2?])
6 _seq("?", "Bob", comment: [?->\ *short* to actor2])
7 _seq("Alice", "1", comment: [->\]\ from actorl *to end*])
8 _seq("Alice", "?", comment: [->7?\ *short* from actorl])
9 _seq("Alice", "Bob", comment: [->\ from actorl to actor2])
10 })

5/26

chronos —v0.3.0

3.4 Custom images

(

compiles content

_ renders document
bl

displays document

Tybst

Rust

)

© 00 N O U1 B W N

=
(o]

11
12
13
14
15
16
17
18
19
20
21 })

let load-img(path) = image(

path,
width: 1.5cm, height: 1.5cm,
fit:"contain"

let TYPST = load-img("../gallery/typst.png")
let FERRIS = load-img("../gallery/ferris.png")
let ME = load-img("../gallery/me.jpg")

chronos.diagram({

import chronos: *

_par("me", display-name: "Me", shape: "custom", custom-image: ME)

_par("typst", display-name: "Typst", shape: "custom", custom-image: TYPST)

_par("rust", display-name: "Rust", shape: "custom", custom-image: FERRIS)

_seq("me", "typst", comment: "opens document", enable-dst: true)

_seq("me", "typst", comment: "types document")

_seq("typst", "rust", comment: "compiles content", enable-dst: true)
_seq("rust", "typst", comment: "renders document", disable-src: true)
_seq("typst", "me", comment: "displays document", disable-src: true)

6/26

chronos —v0.3.0

4 Reference
4.1 Participants

4.1.1 _par
Creates a new participant

Parameters

_par(
name: str,
display-name: auto content,
from-start: bool,
invisible: bool,
shape: str,
color: [color,
line-stroke: stroke,
custom-image: none image,
show-bottom: bool,
show-top: bool

) -> array

name str

Unique participant name used as reference in other functions

display-name auto o content
Name to display in the diagram. If set to auto, name is used

Default: auto

from-start bool

If set to true, the participant is created at the top of the diagram. Otherwise, it is created at the
first reference

Default: true

invisible bool
If set to true, the participant will not be shown

Default: false
shape str

The shape of the participant. Possible values in SHAPES

Default: "participant"

7/26

chronos —v0.3.0

color color
The participant’s color

Default: rgb ("#E2E2F0")

line-stroke stroke
The participant’s line style (defaults to a light gray dashed line)

Default: (
dash: "dashed",
paint: gray.darken(40%),
thickness: .5pt

custom-image none or image
If shape is ‘custom’, sets the custom image to display

Default: none

show-bottom bool
Whether to display the bottom shape

Default: true

show-top bool
Whether to display the top shape

Default: true

4.1.2 col
Sets some options for columns between participants

Parameters pl and p2 MUST be consecutive participants (also counting found/lost messages), but
they do not need to be in the left to right order

Parameters

~col(
pl: str,
p2: str,
width: auto int float length,
margin: int float length,
min-width: int float 1length,
max-width: int float 1length none

8/26

chronos —v0.3.0

pl str

The first neighbouring participant

p2 str

The second neighbouring participant

width auto or int or float or length

Optional fixed width of the column
If the column’s content (e.g. sequence comments) is larger, it will overflow

Default: auto

margin int or float or length

Additional margin to add to the column
This margin is not included in width and min-width, but rather added separately

Default: 0

min-width int o float or length

Minimum width of the column
If set to a larger value than width, the latter will be overriden

Default: 0

max-width int o float or length or none

Maximum width of the column
If set to a lower value than width, the latter will be overriden
If set to none, no restriction is applied

Default: none

4.1.3 SHAPES

Possible participant shapes

actor boundary control entity datapase gol o (queueo custom

9/26

chronos —v0.3.0

4.2 Sequences

4.2.1 evt
Manually adds an event to the given participant

Parameters

_evi(
participant: str,
event: str,
lifeline-style: auto dict

)

participant str

The participant concerned by the event

event str

The event type (see EVENTS for ccepted values)
lifeline-style auto or dict

See seq()

Default: auto

4.2.2 _seq
Creates a sequence / message between two participants

10/26

chronos —v0.3.0

Parameters

_seq(
pl: str,
p2: str,
comment: none content,
comment-align: str,
dashed: bool,
start-tip: str,
end-tip: str,
color: [color,
flip: bool,
enable-dst: bool,
create-dst: bool,
disable-dst: bool,
destroy-dst: bool,
disable-src: bool,
destroy-src: bool ,
lifeline-style: auto dict,
slant: none int,
outer-lifeline-connect: bool
) -> array

pl str
Start participant

p2 str
End participant

comment none o content
Optional comment to display along the arrow

Default: none

comment-align str
Where to align the comment with respect to the arrow (see comment-align for accepted values)

Default: "left"
dashed bool

Whether the arrow’s stroke is dashed or not

Default: false

11/26

chronos —v0.3.0

start-tip str
Start arrow tip (see tips for accepted values)

Default: ""

end-tip str
End arrow tip (see tips for accepted values)

Default: ">"

color color
Arrow’s color

Default: black

flip bool

If true, the arrow is flipped (goes from end to start). This is particularly useful for self calls, to
change the side on which the arrow appears

Default: false

enable-dst bool
If true, enables the destination lifeline

Default: false

create-dst bool
If true, creates the destination lifeline and participant

Default: false

disable-dst bool
If true, disables the destination lifeline

Default: false
destroy-dst bool

If true, destroys the destination lifeline and participant

Default: false

12/26

chronos —v0.3.0

disable-src bool
If true, disables the source lifeline

Default: false

destroy-src bool
If true, destroy the source lifeline and participant

Default: false

lifeline-style auto or dict

Optional styling options for lifeline rectangles (see CeTZ documentation for more information
on all possible values)

Default: auto

slant none or int
Optional slant of the arrow

Default: none

outer-lifeline-connect bool

If true, enables legacy anchoring, making sequences connect to the leftmost lifeline when
arriving from the left side. If false, all connections are made with the latest/rightmost lifeline

Default: false

4.2.3 _ret
Creates a return sequence
1 _seq
2 "Bob", "Alice",
3 comment: [hellol],
4 enable-dst: true
5)
6 seq(
7 "Alice", "Alice",
8 comment: [some action]
9)
10 ret(comment: [bye])

13/26

chronos —v0.3.0

Parameters
_ret(comment: none content)

comment none or content
Optional comment to display along the arrow

Default: none

4.2.4 comment-align

Accepted values for comment-align argument of seq()

1 par("pl", @ Typst
2 display-name: "Start participant")
3 7par(”p2”;
Start partICIpant] [End participant 4 display-name: "End participant")
| ; 5 let alignments = (
‘ start,
< i 6 "start", "end",
' _end ! 7 "left", "right",
1 1 8 "center"
1 left !
N } 9)
P right, 10 for a in alignments {
| } 11 _seq(
> center |
T i 12 llp2n’ "pl",
Startparticipant] [End participant 13 comment: raw(a),
14 comment-align: a
15)
16 }

~

4.2.5 EVENTS
Accepted values for event argument of evt()

EVENTS = ("create", "destroy", "enable", "disable")

4.2.6 tips

Accepted values for start-tip and end-tip arguments of seq()

14/26

chronos —v0.3.0

3 Various tips 3

i i 1 let seq = seq.with(comment-align: "center") @ Typst
3 -> 3 2 par("a", display-name: "Alice")

1 1 3 par("b", display-name: "Bob")

— = |4

1 -\ 1 5 seq("a", "b", comment: "Various tips", end-tip: "")
} } 6 seq("a", "b", end-tip: ">", comment: "->")
%___;ll____;ﬁ 7 seq("a", "b", end-tip: ">>", comment: " ->>")

| -/ | 8 seq("a", "b", end-tip: "\\", comment: "-\")
F__________ﬂ'? 9 seq("a", "b", end-tip: "\\\\", comment: "-\\")
%———;11————7# 10 seq("a", "b", end-tip: "/", comment: "-/")

| ->X ;:3 11 seq("a", "b", end-tip: "//", comment: "-//")

l l 12 seq("a", "b", end-tip: "x", comment: ->x")
3)(——jiii———Fﬁ 13 seq("a", "b", start-tip: "x", comment: x->")

‘ 0-> | 14 seq("a", "b", start-tip: "o", comment: o0->")

| 3 15 seq("a", "b", end-tip: ("o", ">"), comment: "->0)
1_4>0>Q 16 seq("a", "b", start-tip: "o",

| 0->0 | 17 end-tip: ("o", ">"), comment: "0->0)
1 ! 18 seq("a", "b", start-tip: ">",

%‘___f;i___.% 19 end-tip: ">", comment: "<->)

‘ 0<->0 ‘ 20 seq("a", "b", start-tip: ("o", ">"),

! ! 21 end-tip: ("o", ">"), comment: ‘0<->0")
1)6—55;35—%<1 22 seq("a", "b", start-tip: "x",

| ->>0 | 23 end-tip: "x", comment: “x<->x")

3 \o i 24 seq("a", "b", end-tip: ("o", ">>"), comment: " ->>0")
. 25 seq("a", "b", end-tip: ("o", "\\"), comment: "-\o)
! -\\o 1 26 seq("a", "b", end-tip: ("o", "\\\\"), comment: "-\\o')
} /o | 27 seq("a", "b", end-tip: ("o", "/"), comment: "-/0)
—— 28 seq("a", "b", end-tip: ("o", "//"), comment: '-//0")
| -//0 ‘ 29 seq("a", "b", start-tip: "x",

1 w 30 end-tip: ("o", ">"), comment: ‘x->0")
X e

15/26

chronos —v0.3.0

4.3 Groups

4.3.1 _grp
Creates a group of sequences

r

Groub1) [Description] 3

' Authentication

\ 4

loop J [1000 times]

DoS Attack

1.V

X

Bob

.

© 00 N O U1 B W N =

=
(<]
-

par("a", display-name: "Alice") @ Typst
par("b", display-name: "Bob")

grp("Group 1", desc: "Description", {
_seq("a", "b", comment: "Authentication")
~grp("loop", desc: "1000 times", {
~seq("a", "b", comment: "DoS Attack")
})
~seq("a", "b", end-tip: "x")
)

Parameters

_grp(
name: content ,
elmts: array,
desc: none content,
type: str

)

name content

The group’s name

elmts array

Elements inside the group (can be sequences, other groups, notes, etc.)

desc none or content
Optional description

Default: none

type str

The groups’s type (should only be set through other functions like alt() or loop())

Default: "default"

16/26

chronos —v0.3.0

4.3.2 _alt

Creates an alt-else group of sequences

It contains at least one section but can have as many as needed

r

alt /[first encounter] |

EWho areyou?
——>

" I'mBob

[knayveachotheﬂ

‘HelloBob

. Hello Alice

Hi!

»
!

[best friends] 3

_Hil

.

© 00 N O U1 A W N B

[e o T T e T N S S S Ry o
© 00 N O Ul A W N R O

_par("a", display-name:
_par("b", display-name:

_alt(
"first encounter", {
7seq(llall’

_Seq("b", a",

}

"know eachother", {

_seq("a", "b", comment:

7seq(”b“, a",

b

"best friends", {
Ilbll ,

||a||,

7Seq(“a”,
7Seq("b”,

"b", comment:
comment:

comment:

comment:
comment:

"Alice")
n Bobll)

"Who are you ?")
IIIIm Bobll)

"Hello Bob")
"Hello Alice")

"Hi ")
"Hi ")

@ Typst

N\

Parameters
Calt(
desc:
elmts:
..args:

content ,
array ,

content

desc content

The alt’s label

elmts array

array

Elements inside the alt’s first section

..args

content or array

Complementary “else” sections.

You can add as many else sections as you need by passing a content (else section label)

followed by an array of elements (see example)

17/26

chronos —v0.3.0

4.3.3 _loop
Creates a looped group of sequences

e

.

Ioc;p) [default loop]

iAre you here?

1
]
1
1
1
1
»
>,

loop(1;) J [min loop]

Are you here?

>

' Are you still here?

loop(1,5) / [min-max loo

]

81----

Y

v o)
o
(ox

_par("a", display-name: "Alice") 0@ Typst

_par("b", display-name: "Bob")

_loop("default loop", {

_seq("a",
})
_gap()

”b”,

comment:

~loop("min loop", min: 1,

_seq("a",
})
_gap()

~loop("min-max loop", min:

_Seq("a”,

}

“b",

"b",

comment:

comment:

"Are you here?")

{

"Are you here?")

1, max: 5, {

"Are you still here?")

Parameters

_loop(
desc: content,
elmts: array,
min: none number ,
max: auto number

desc content

Loop description

elmts array

Elements inside the group

min none or number

Optional lower bound of the loop

Default: none

max auto or number

Upper bound of the loop. If left as auto and min is set, it will be infinity (' *')

Default: auto

18/26

chronos —v0.3.0

4.3.4 _sync

Synchronizes multiple sequences
All elements inside a synchronized group will start at the same time

r

[Ali‘ce] [Bc‘)b] [Cr:aig]

[Ali‘ce] [Bé)b] [Créig]

.

© 00 N O Ul B W N =

10

12
13
14
15
16

_par("alice", display-

name: "Alice")

_par("bob", display-name: "Bob")

_par("craig", display-

_seq("bob", "alice")
_seq("bob", "craig")

_sync({
_seq("bob", "alice")
_seq("bob", "craig")
1)
_seq("alice", "bob")

_seq("craig", "bob")
_sync({
_seq("alice", "bob")

_seq("craig", "bob")

name: "Craig")

// Unsynchronized
// n

// Synchronized
// n

// Unsynchronized
/7"

// Synchronized
/7"

0O Typst

Parameters
~sync(elmts: array)

elmts array

Synchronized elements (generally sequences or notes)

4.3.5 _opt
Creates an optional group

This is a simple wrapper around grp()

Parameters
_opt(
desc:
elmts:

content ,
array

desc content

Group description
elmts array

Elements inside the group

19/26

chronos —v0.3.0

4.3.6 _break
Creates a break group
This is a simple wrapper around grp()

Parameters

_break(
desc: content,
elmts: array

desc content

Group description

elmts array

Elements inside the group

20/26

chronos —v0.3.0

4.4 Gaps and separators

4.4.1 _sep

Creates a separator before the next element

r

Bob

——Initialization —=

_par("a", display-name:

_par("b", display-name:

~sep[Initialization]

~seq("a", "b", comment:
_seq(
"b", Ilall,

comment: [Response 1],

dashed: true

_sep[Repetition]
_seq("a", "b", comment:
_seq(

"b", "a",

comment: [Response 2],

dashed: true

"Alice")
n Bobll)

[Request 1])

[Request 2])

@ Typst

N\

Parameters
~sep(name: content)

name content

Name to display in the middle of the separator

4.4.2 _delay

Creates a delay before the next element

21/26

chronos —v0.3.0

_par("a", display-name:
_par("b", display-name:

_seq("a",

_delay()

_seq(
M0, TET .

"b", comment:

"Alice")
IIBObII)

[Auth Request])

comment: [Auth Responsel,

dashed: true
)

~delay(name: [5 minutes later])

_seq(
"b"I IIa“l

comment: [Good Bye !],

dashed: true

iAuth Request J
3 Auth Responsei
- 5 minutes later -
' Good Bye! |
Parameters
_delay(
name: content none,
size: int
)
name content or none

Name to display in the middle of the delay area

Default: none
size int

Size of the delay
Default: 30

4.4.3 _gap

Creates a gap before the next element

22/26

chronos —v0.3.0

1 par("a",
2 par("b",
3

4 seq("a",
5 seq("b",
6 gap()

7 _seq("a",
8 seq("b",
9 gap(size:
10 seq("a",
11 seq("b",

display-name:
display-name:

"b", comment:

"a", comment:

"b", comment:
"a", comment:

40)

"b", comment:
"a", comment:

"Alice")
IIBObII)

[message 11])

[ok], dashed:

[message 2])

[ok], dashed:

[message 3])

[ok], dashed:

true)

true)

true)

Parameters

~gap(size: int)

size int
Size of the gap
Default: 20

23/26

chronos —v0.3.0

4.5 Notes

4.5.1 note
Creates a note

Parameters

_note(
side: str,
content: content,
pos: none str array,
color: [color,
shape: str,
aligned: bool ,
allow-overlap: bool

side str

The side on which to place the note (see SIDES for accepted values)

content content

The note’s content

pos none or Str or array

Optional participant(s) on which to draw next to / over. If side is “left” or “right”, sets next to
which participant the note is placed. If side is “over”, sets over which participant(s) it is placed

Default: none

color color
The note’s color

Default: rgb ("#FEFFDD")

shape str
The note’s shape (see SHAPES for accepted values)

Default: "default"

aligned bool

True if the note is aligned with another note, in which case side must be "over", false
otherwise

Default: false

24/26

chronos —v0.3.0

allow-overlap

bool

If set to false, the note will try to reserve space in the column to avoid overlapping with
neighboring participants. If set to true, the not will overlap other participants

Default: true

4.5.2 SHAPES

Accepted values for shape argument of note()

r

.

(ice] (805
defaulti

rect

m Bob

_par("alice", display-name: "Alice")
_par("bob", display-name: "Bob")

_note("over", “default , pos: "alice")

_note("over", ‘rect’, pos: "bob", shape: "rect")

_note("over", “hex , pos: ("alice", "bob"), shape: "hex")

4.5.3 SIDES

Accepted values for side argument of note()

25/26

chronos —v0.3.0

[Alice] [B?b] [Charlie]

left of Alice

right of Charlie Iﬁ

over Alice and Bob Iﬁ

across all participants 'ﬁ

linked with sequence 'j—»

A note ﬁ Aligned note ﬁ

(Aice) [Bob) [Charti]

_par("alice", display-name: "Alice") Typst
_par("bob", display-name: "Bob")

_par("charlie", display-name: "Charlie")

_note("left", [left® of Alice], pos: "alice")

_note("right", ["right" of Charliel], pos: "charlie")

_note("over", [‘over® Alice and Bob], pos: ("alice", "bob"))

_note("across", ["across’ all participants])

_seq("alice", "bob")

© 0 N O Ul b W N BB

_note("left", [linked with sequence])
10 note("over", [A note], pos: "alice")

11 note("over", [Aligned note], pos: "charlie", aligned: true)

26/26

	1 Introduction
	2 Usage
	3 Examples
	3.1 Some groups and sequences
	3.2 Lifelines
	3.3 Found and lost messages
	3.4 Custom images

	4 Reference
	4.1 Participants
	4.1.1 _par
	 Parameters
	 name
	 display-name
	 from-start
	 invisible
	 shape
	 color
	 line-stroke
	 custom-image
	 show-bottom
	 show-top

	4.1.2 _col
	 Parameters
	 p1
	 p2
	 width
	 margin
	 min-width
	 max-width

	4.1.3 SHAPES

	4.2 Sequences
	4.2.1 _evt
	 Parameters
	 participant
	 event
	 lifeline-style

	4.2.2 _seq
	 Parameters
	 p1
	 p2
	 comment
	 comment-align
	 dashed
	 start-tip
	 end-tip
	 color
	 flip
	 enable-dst
	 create-dst
	 disable-dst
	 destroy-dst
	 disable-src
	 destroy-src
	 lifeline-style
	 slant
	 outer-lifeline-connect

	4.2.3 _ret
	 Parameters
	 comment

	4.2.4 comment-align
	4.2.5 EVENTS
	4.2.6 tips

	4.3 Groups
	4.3.1 _grp
	 Parameters
	 name
	 elmts
	 desc
	 type

	4.3.2 _alt
	 Parameters
	 desc
	 elmts
	 ..args

	4.3.3 _loop
	 Parameters
	 desc
	 elmts
	 min
	 max

	4.3.4 _sync
	 Parameters
	 elmts

	4.3.5 _opt
	 Parameters
	 desc
	 elmts

	4.3.6 _break
	 Parameters
	 desc
	 elmts

	4.4 Gaps and separators
	4.4.1 _sep
	 Parameters
	 name

	4.4.2 _delay
	 Parameters
	 name
	 size

	4.4.3 _gap
	 Parameters
	 size

	4.5 Notes
	4.5.1 _note
	 Parameters
	 side
	 content
	 pos
	 color
	 shape
	 aligned
	 allow-overlap

	4.5.2 SHAPES
	4.5.3 SIDES

