// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /**************************************************************************** * @file bike_system.cpp * @author Serge Ayer * @author Rémi Heredero * @author Yann Sierro * * @brief Bike System implementation (static scheduling) * * @date 2023-11-15 * @version 1.1.0 ***************************************************************************/ #include "bike_system.hpp" #include #include "mbed_trace.h" #if MBED_CONF_MBED_TRACE_ENABLE #define TRACE_GROUP "BikeSystem" #endif // MBED_CONF_MBED_TRACE_ENABLE namespace static_scheduling_with_event { static constexpr std::chrono::milliseconds kGearTaskPeriod = 800ms; static constexpr std::chrono::milliseconds kGearTaskDelay = 0ms; static constexpr std::chrono::milliseconds kGearTaskComputationTime = 100ms; static constexpr std::chrono::milliseconds kSpeedDistanceTaskPeriod = 400ms; static constexpr std::chrono::milliseconds kSpeedDistanceTaskDelay = 100ms; static constexpr std::chrono::milliseconds kSpeedDistanceTaskComputationTime = 200ms; static constexpr std::chrono::milliseconds kDisplayTask1Period = 1600ms; static constexpr std::chrono::milliseconds kDisplayTask1Delay = 300ms; static constexpr std::chrono::milliseconds kDisplayTask1ComputationTime = 200ms; static constexpr std::chrono::milliseconds kResetTaskPeriod = 800ms; static constexpr std::chrono::milliseconds kResetTaskDelay = 700ms; static constexpr std::chrono::milliseconds kResetTaskComputationTime = 100ms; static constexpr std::chrono::milliseconds kTemperatureTaskPeriod = 1600ms; static constexpr std::chrono::milliseconds kTemperatureTaskDelay = 1100ms; static constexpr std::chrono::milliseconds kTemperatureTaskComputationTime = 100ms; static constexpr std::chrono::milliseconds kDisplayTask2Period = 1600ms; static constexpr std::chrono::milliseconds kDisplayTask2Delay = 1200ms; static constexpr std::chrono::milliseconds kDisplayTask2ComputationTime = 100ms; static constexpr std::chrono::milliseconds kCPUTaskPeriod = 1600ms; static constexpr std::chrono::milliseconds kCPUTaskDelay = 1200ms; static constexpr std::chrono::milliseconds kCPUTaskComputationTime = 100ms; BikeSystem::BikeSystem() : _gearDevice(), _pedalDevice(), _resetDevice(callback(this, &BikeSystem::onReset)), _speedometer(_timer), _cpuLogger(_timer) {} void BikeSystem::start() { tr_info("Starting Super-Loop with event handling"); init(); EventQueue eventQueue; Event gearEvent(&eventQueue, callback(this, &BikeSystem::gearTask)); gearEvent.delay(kGearTaskDelay); gearEvent.period(kGearTaskPeriod); gearEvent.post(); Event speedDistanceEvent(&eventQueue, callback(this, &BikeSystem::speedDistanceTask)); speedDistanceEvent.delay(kSpeedDistanceTaskDelay); speedDistanceEvent.period(kSpeedDistanceTaskPeriod); speedDistanceEvent.post(); Event display1Event(&eventQueue, callback(this, &BikeSystem::displayTask1)); display1Event.delay(kDisplayTask1Delay); display1Event.period(kDisplayTask1Period); display1Event.post(); Event resetEvent(&eventQueue, callback(this, &BikeSystem::resetTask)); resetEvent.delay(kResetTaskDelay); resetEvent.period(kResetTaskPeriod); resetEvent.post(); Event temperatureEvent(&eventQueue, callback(this, &BikeSystem::temperatureTask)); temperatureEvent.delay(kTemperatureTaskDelay); temperatureEvent.period(kTemperatureTaskPeriod); temperatureEvent.post(); Event display2Event(&eventQueue, callback(this, &BikeSystem::displayTask2)); display2Event.delay(kDisplayTask2Delay); display2Event.period(kDisplayTask2Period); display2Event.post(); #if !defined(MBED_TEST_MODE) Event cpuEvent(&eventQueue, callback(this, &BikeSystem::cpuTask)); cpuEvent.delay(kCPUTaskDelay); cpuEvent.period(kCPUTaskPeriod); cpuEvent.post(); #endif eventQueue.dispatch_forever(); } void BikeSystem::onReset() { _resetTime = _timer.elapsed_time(); core_util_atomic_store_bool(&_resetFlag, true); } void BikeSystem::stop() { core_util_atomic_store_bool(&_stopFlag, true); } #if defined(MBED_TEST_MODE) const advembsof::TaskLogger& BikeSystem::getTaskLogger() { return _taskLogger; } #endif // defined(MBED_TEST_MODE) void BikeSystem::init() { // start the timer _timer.start(); // initialize the lcd display disco::ReturnCode rc = _displayDevice.init(); if (rc != disco::ReturnCode::Ok) { tr_error("Failed to initialized the lcd display: %d", static_cast(rc)); } // initialize the sensor device bool present = _sensorDevice.init(); if (!present) { tr_error("Sensor not present or initialization failed"); } // enable/disable task logging _taskLogger.enable(true); } void BikeSystem::gearTask() { // gear task auto taskStartTime = _timer.elapsed_time(); // no need to protect access to data members (single threaded) _currentGear = _gearDevice.getCurrentGear(); _currentGearSize = _gearDevice.getCurrentGearSize(); _taskLogger.logPeriodAndExecutionTime( _timer, advembsof::TaskLogger::kGearTaskIndex, taskStartTime); } void BikeSystem::speedDistanceTask() { auto taskStartTime = _timer.elapsed_time(); const auto pedalRotationTime = _pedalDevice.getCurrentRotationTime(); _speedometer.setCurrentRotationTime(pedalRotationTime); _speedometer.setGearSize(_currentGearSize); _currentSpeed = _speedometer.getCurrentSpeed(); _traveledDistance = _speedometer.getDistance(); _taskLogger.logPeriodAndExecutionTime( _timer, advembsof::TaskLogger::kSpeedTaskIndex, taskStartTime); } void BikeSystem::temperatureTask() { auto taskStartTime = _timer.elapsed_time(); // tr_warn("Tick1 %" PRIu64, _timer.elapsed_time().count()); // no need to protect access to data members (single threaded) _currentTemperature = _sensorDevice.readTemperature(); // tr_warn("Tick2 %" PRIu64, _timer.elapsed_time().count()); ThisThread::sleep_for(std::chrono::duration_cast( kTemperatureTaskComputationTime - (_timer.elapsed_time() - taskStartTime))); _taskLogger.logPeriodAndExecutionTime( _timer, advembsof::TaskLogger::kTemperatureTaskIndex, taskStartTime); } void BikeSystem::resetTask() { auto taskStartTime = _timer.elapsed_time(); if (core_util_atomic_load_bool(&_resetFlag)) { std::chrono::microseconds responseTime = _timer.elapsed_time() - _resetTime; tr_info("Reset task: response time is %" PRIu64 " usecs", responseTime.count()); _speedometer.reset(); core_util_atomic_store_bool(&_resetFlag, false); } _taskLogger.logPeriodAndExecutionTime( _timer, advembsof::TaskLogger::kResetTaskIndex, taskStartTime); } void BikeSystem::displayTask1() { auto taskStartTime = _timer.elapsed_time(); _displayDevice.displayGear(_currentGear); _displayDevice.displaySpeed(_currentSpeed); _displayDevice.displayDistance(_traveledDistance); ThisThread::sleep_for(std::chrono::duration_cast( kDisplayTask1ComputationTime - (_timer.elapsed_time() - taskStartTime))); _taskLogger.logPeriodAndExecutionTime( _timer, advembsof::TaskLogger::kDisplayTask1Index, taskStartTime); } void BikeSystem::displayTask2() { auto taskStartTime = _timer.elapsed_time(); _displayDevice.displayTemperature(_currentTemperature); ThisThread::sleep_for(std::chrono::duration_cast( kDisplayTask2ComputationTime - (_timer.elapsed_time() - taskStartTime))); _taskLogger.logPeriodAndExecutionTime( _timer, advembsof::TaskLogger::kDisplayTask2Index, taskStartTime); } void BikeSystem::cpuTask() { _cpuLogger.printStats(); } } // namespace static_scheduling_with_event