2115 lines
75 KiB
C
2115 lines
75 KiB
C
|
/**
|
||
|
******************************************************************************
|
||
|
* @file stm32f7xx_hal_adc.c
|
||
|
* @author MCD Application Team
|
||
|
* @brief This file provides firmware functions to manage the following
|
||
|
* functionalities of the Analog to Digital Converter (ADC) peripheral:
|
||
|
* + Initialization and de-initialization functions
|
||
|
* + Peripheral Control functions
|
||
|
* + Peripheral State functions
|
||
|
*
|
||
|
******************************************************************************
|
||
|
* @attention
|
||
|
*
|
||
|
* Copyright (c) 2017 STMicroelectronics.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This software is licensed under terms that can be found in the LICENSE file
|
||
|
* in the root directory of this software component.
|
||
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||
|
*
|
||
|
******************************************************************************
|
||
|
@verbatim
|
||
|
==============================================================================
|
||
|
##### ADC Peripheral features #####
|
||
|
==============================================================================
|
||
|
[..]
|
||
|
(#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution.
|
||
|
(#) Interrupt generation at the end of conversion, end of injected conversion,
|
||
|
and in case of analog watchdog or overrun events
|
||
|
(#) Single and continuous conversion modes.
|
||
|
(#) Scan mode for automatic conversion of channel 0 to channel x.
|
||
|
(#) Data alignment with in-built data coherency.
|
||
|
(#) Channel-wise programmable sampling time.
|
||
|
(#) External trigger option with configurable polarity for both regular and
|
||
|
injected conversion.
|
||
|
(#) Dual/Triple mode (on devices with 2 ADCs or more).
|
||
|
(#) Configurable DMA data storage in Dual/Triple ADC mode.
|
||
|
(#) Configurable delay between conversions in Dual/Triple interleaved mode.
|
||
|
(#) ADC conversion type (refer to the datasheets).
|
||
|
(#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at
|
||
|
slower speed.
|
||
|
(#) ADC input range: VREF(minus) = VIN = VREF(plus).
|
||
|
(#) DMA request generation during regular channel conversion.
|
||
|
|
||
|
|
||
|
##### How to use this driver #####
|
||
|
==============================================================================
|
||
|
[..]
|
||
|
(#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit():
|
||
|
(##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE()
|
||
|
(##) ADC pins configuration
|
||
|
(+++) Enable the clock for the ADC GPIOs using the following function:
|
||
|
__HAL_RCC_GPIOx_CLK_ENABLE()
|
||
|
(+++) Configure these ADC pins in analog mode using HAL_GPIO_Init()
|
||
|
(##) In case of using interrupts (e.g. HAL_ADC_Start_IT())
|
||
|
(+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority()
|
||
|
(+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ()
|
||
|
(+++) In ADC IRQ handler, call HAL_ADC_IRQHandler()
|
||
|
(##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA())
|
||
|
(+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE()
|
||
|
(+++) Configure and enable two DMA streams stream for managing data
|
||
|
transfer from peripheral to memory (output stream)
|
||
|
(+++) Associate the initialized DMA handle to the CRYP DMA handle
|
||
|
using __HAL_LINKDMA()
|
||
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
||
|
interrupt on the two DMA Streams. The output stream should have higher
|
||
|
priority than the input stream.
|
||
|
|
||
|
*** Configuration of ADC, groups regular/injected, channels parameters ***
|
||
|
==============================================================================
|
||
|
[..]
|
||
|
(#) Configure the ADC parameters (resolution, data alignment, ...)
|
||
|
and regular group parameters (conversion trigger, sequencer, ...)
|
||
|
using function HAL_ADC_Init().
|
||
|
|
||
|
(#) Configure the channels for regular group parameters (channel number,
|
||
|
channel rank into sequencer, ..., into regular group)
|
||
|
using function HAL_ADC_ConfigChannel().
|
||
|
|
||
|
(#) Optionally, configure the injected group parameters (conversion trigger,
|
||
|
sequencer, ..., of injected group)
|
||
|
and the channels for injected group parameters (channel number,
|
||
|
channel rank into sequencer, ..., into injected group)
|
||
|
using function HAL_ADCEx_InjectedConfigChannel().
|
||
|
|
||
|
(#) Optionally, configure the analog watchdog parameters (channels
|
||
|
monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig().
|
||
|
|
||
|
(#) Optionally, for devices with several ADC instances: configure the
|
||
|
multimode parameters using function HAL_ADCEx_MultiModeConfigChannel().
|
||
|
|
||
|
*** Execution of ADC conversions ***
|
||
|
==============================================================================
|
||
|
[..]
|
||
|
(#) ADC driver can be used among three modes: polling, interruption,
|
||
|
transfer by DMA.
|
||
|
|
||
|
*** Polling mode IO operation ***
|
||
|
=================================
|
||
|
[..]
|
||
|
(+) Start the ADC peripheral using HAL_ADC_Start()
|
||
|
(+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage
|
||
|
user can specify the value of timeout according to his end application
|
||
|
(+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
|
||
|
(+) Stop the ADC peripheral using HAL_ADC_Stop()
|
||
|
|
||
|
*** Interrupt mode IO operation ***
|
||
|
===================================
|
||
|
[..]
|
||
|
(+) Start the ADC peripheral using HAL_ADC_Start_IT()
|
||
|
(+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine
|
||
|
(+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can
|
||
|
add his own code by customization of function pointer HAL_ADC_ConvCpltCallback
|
||
|
(+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can
|
||
|
add his own code by customization of function pointer HAL_ADC_ErrorCallback
|
||
|
(+) Stop the ADC peripheral using HAL_ADC_Stop_IT()
|
||
|
|
||
|
*** DMA mode IO operation ***
|
||
|
==============================
|
||
|
[..]
|
||
|
(+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length
|
||
|
of data to be transferred at each end of conversion
|
||
|
(+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can
|
||
|
add his own code by customization of function pointer HAL_ADC_ConvCpltCallback
|
||
|
(+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can
|
||
|
add his own code by customization of function pointer HAL_ADC_ErrorCallback
|
||
|
(+) Stop the ADC peripheral using HAL_ADC_Stop_DMA()
|
||
|
|
||
|
*** ADC HAL driver macros list ***
|
||
|
=============================================
|
||
|
[..]
|
||
|
Below the list of most used macros in ADC HAL driver.
|
||
|
|
||
|
(+) __HAL_ADC_ENABLE : Enable the ADC peripheral
|
||
|
(+) __HAL_ADC_DISABLE : Disable the ADC peripheral
|
||
|
(+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt
|
||
|
(+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt
|
||
|
(+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled
|
||
|
(+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags
|
||
|
(+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status
|
||
|
(+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register
|
||
|
|
||
|
*** Callback functions ***
|
||
|
==============================
|
||
|
[..]
|
||
|
(@) Callback functions must be implemented in user program:
|
||
|
(+@) HAL_ADC_ErrorCallback()
|
||
|
(+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
|
||
|
(+@) HAL_ADC_ConvCpltCallback()
|
||
|
(+@) HAL_ADC_ConvHalfCpltCallback
|
||
|
|
||
|
(@) You can refer to the ADC HAL driver header file for more useful macros
|
||
|
|
||
|
*** Deinitialization of ADC ***
|
||
|
==============================================================================
|
||
|
[..]
|
||
|
(#) Disable the ADC interface
|
||
|
(++) ADC clock can be hard reset and disabled at RCC top level.
|
||
|
(++) Hard reset of ADC peripherals
|
||
|
using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET().
|
||
|
(++) ADC clock disable using the equivalent macro/functions as configuration step.
|
||
|
(+++) Example:
|
||
|
Into HAL_ADC_MspDeInit() (recommended code location) or with
|
||
|
other device clock parameters configuration:
|
||
|
(+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure);
|
||
|
(+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI;
|
||
|
(+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock)
|
||
|
(+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);
|
||
|
|
||
|
(#) ADC pins configuration
|
||
|
(++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE()
|
||
|
|
||
|
(#) Optionally, in case of usage of ADC with interruptions:
|
||
|
(++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn)
|
||
|
|
||
|
(#) Optionally, in case of usage of DMA:
|
||
|
(++) Deinitialize the DMA using function HAL_DMA_DeInit().
|
||
|
(++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn)
|
||
|
|
||
|
*** Callback registration ***
|
||
|
==============================================================================
|
||
|
[..]
|
||
|
|
||
|
The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
|
||
|
allows the user to configure dynamically the driver callbacks.
|
||
|
Use Functions HAL_ADC_RegisterCallback()
|
||
|
to register an interrupt callback.
|
||
|
[..]
|
||
|
|
||
|
Function HAL_ADC_RegisterCallback() allows to register following callbacks:
|
||
|
(+) ConvCpltCallback : ADC conversion complete callback
|
||
|
(+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
|
||
|
(+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
|
||
|
(+) ErrorCallback : ADC error callback
|
||
|
(+) InjectedConvCpltCallback : ADC group injected conversion complete callback
|
||
|
(+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
|
||
|
(+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
|
||
|
(+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
|
||
|
(+) EndOfSamplingCallback : ADC end of sampling callback
|
||
|
(+) MspInitCallback : ADC Msp Init callback
|
||
|
(+) MspDeInitCallback : ADC Msp DeInit callback
|
||
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
||
|
and a pointer to the user callback function.
|
||
|
[..]
|
||
|
|
||
|
Use function HAL_ADC_UnRegisterCallback to reset a callback to the default
|
||
|
weak function.
|
||
|
[..]
|
||
|
|
||
|
HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
|
||
|
and the Callback ID.
|
||
|
This function allows to reset following callbacks:
|
||
|
(+) ConvCpltCallback : ADC conversion complete callback
|
||
|
(+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
|
||
|
(+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
|
||
|
(+) ErrorCallback : ADC error callback
|
||
|
(+) InjectedConvCpltCallback : ADC group injected conversion complete callback
|
||
|
(+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
|
||
|
(+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
|
||
|
(+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
|
||
|
(+) EndOfSamplingCallback : ADC end of sampling callback
|
||
|
(+) MspInitCallback : ADC Msp Init callback
|
||
|
(+) MspDeInitCallback : ADC Msp DeInit callback
|
||
|
[..]
|
||
|
|
||
|
By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET
|
||
|
all callbacks are set to the corresponding weak functions:
|
||
|
examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback().
|
||
|
Exception done for MspInit and MspDeInit functions that are
|
||
|
reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when
|
||
|
these callbacks are null (not registered beforehand).
|
||
|
[..]
|
||
|
|
||
|
If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit()
|
||
|
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
|
||
|
[..]
|
||
|
|
||
|
Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only.
|
||
|
Exception done MspInit/MspDeInit functions that can be registered/unregistered
|
||
|
in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state,
|
||
|
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
||
|
[..]
|
||
|
|
||
|
Then, the user first registers the MspInit/MspDeInit user callbacks
|
||
|
using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit()
|
||
|
or HAL_ADC_Init() function.
|
||
|
[..]
|
||
|
|
||
|
When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
|
||
|
not defined, the callback registration feature is not available and all callbacks
|
||
|
are set to the corresponding weak functions.
|
||
|
|
||
|
@endverbatim
|
||
|
******************************************************************************
|
||
|
*/
|
||
|
|
||
|
/* Includes ------------------------------------------------------------------*/
|
||
|
#include "stm32f7xx_hal.h"
|
||
|
|
||
|
/** @addtogroup STM32F7xx_HAL_Driver
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/** @defgroup ADC ADC
|
||
|
* @brief ADC driver modules
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
#ifdef HAL_ADC_MODULE_ENABLED
|
||
|
|
||
|
/* Private typedef -----------------------------------------------------------*/
|
||
|
/* Private define ------------------------------------------------------------*/
|
||
|
/* Private macro -------------------------------------------------------------*/
|
||
|
/* Private variables ---------------------------------------------------------*/
|
||
|
/** @addtogroup ADC_Private_Functions
|
||
|
* @{
|
||
|
*/
|
||
|
/* Private function prototypes -----------------------------------------------*/
|
||
|
static void ADC_Init(ADC_HandleTypeDef* hadc);
|
||
|
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
|
||
|
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
|
||
|
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/* Exported functions --------------------------------------------------------*/
|
||
|
/** @defgroup ADC_Exported_Functions ADC Exported Functions
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
|
||
|
* @brief Initialization and Configuration functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### Initialization and de-initialization functions #####
|
||
|
===============================================================================
|
||
|
[..] This section provides functions allowing to:
|
||
|
(+) Initialize and configure the ADC.
|
||
|
(+) De-initialize the ADC.
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Initializes the ADCx peripheral according to the specified parameters
|
||
|
* in the ADC_InitStruct and initializes the ADC MSP.
|
||
|
*
|
||
|
* @note This function is used to configure the global features of the ADC (
|
||
|
* ClockPrescaler, Resolution, Data Alignment and number of conversion), however,
|
||
|
* the rest of the configuration parameters are specific to the regular
|
||
|
* channels group (scan mode activation, continuous mode activation,
|
||
|
* External trigger source and edge, DMA continuous request after the
|
||
|
* last transfer and End of conversion selection).
|
||
|
*
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
||
|
|
||
|
/* Check ADC handle */
|
||
|
if(hadc == NULL)
|
||
|
{
|
||
|
return HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
||
|
assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
|
||
|
assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
|
||
|
assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
||
|
assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv));
|
||
|
assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
|
||
|
assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
|
||
|
assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
|
||
|
|
||
|
if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
|
||
|
{
|
||
|
assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
||
|
}
|
||
|
|
||
|
if(hadc->State == HAL_ADC_STATE_RESET)
|
||
|
{
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
/* Init the ADC Callback settings */
|
||
|
hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
|
||
|
hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
|
||
|
hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
|
||
|
hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
|
||
|
hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
|
||
|
if (hadc->MspInitCallback == NULL)
|
||
|
{
|
||
|
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
|
||
|
}
|
||
|
|
||
|
/* Init the low level hardware */
|
||
|
hadc->MspInitCallback(hadc);
|
||
|
#else
|
||
|
/* Init the low level hardware */
|
||
|
HAL_ADC_MspInit(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
/* Initialize ADC error code */
|
||
|
ADC_CLEAR_ERRORCODE(hadc);
|
||
|
|
||
|
/* Allocate lock resource and initialize it */
|
||
|
hadc->Lock = HAL_UNLOCKED;
|
||
|
}
|
||
|
|
||
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
||
|
/* correctly completed. */
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
||
|
HAL_ADC_STATE_BUSY_INTERNAL);
|
||
|
|
||
|
/* Set ADC parameters */
|
||
|
ADC_Init(hadc);
|
||
|
|
||
|
/* Set ADC error code to none */
|
||
|
ADC_CLEAR_ERRORCODE(hadc);
|
||
|
|
||
|
/* Set the ADC state */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
||
|
HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tmp_hal_status = HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Release Lock */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return tmp_hal_status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Deinitializes the ADCx peripheral registers to their default reset values.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
||
|
|
||
|
/* Check ADC handle */
|
||
|
if(hadc == NULL)
|
||
|
{
|
||
|
return HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
||
|
|
||
|
/* Set ADC state */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
|
||
|
|
||
|
/* Stop potential conversion on going, on regular and injected groups */
|
||
|
/* Disable ADC peripheral */
|
||
|
__HAL_ADC_DISABLE(hadc);
|
||
|
|
||
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
||
|
/* correctly completed. */
|
||
|
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
if (hadc->MspDeInitCallback == NULL)
|
||
|
{
|
||
|
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
|
||
|
}
|
||
|
|
||
|
/* DeInit the low level hardware: RCC clock, NVIC */
|
||
|
hadc->MspDeInitCallback(hadc);
|
||
|
#else
|
||
|
/* DeInit the low level hardware: RCC clock, NVIC */
|
||
|
HAL_ADC_MspDeInit(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
/* Set ADC error code to none */
|
||
|
ADC_CLEAR_ERRORCODE(hadc);
|
||
|
|
||
|
/* Set ADC state */
|
||
|
hadc->State = HAL_ADC_STATE_RESET;
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return tmp_hal_status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Initializes the ADC MSP.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hadc);
|
||
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
|
the HAL_ADC_MspInit could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief DeInitializes the ADC MSP.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hadc);
|
||
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
|
the HAL_ADC_MspDeInit could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
/**
|
||
|
* @brief Register a User ADC Callback
|
||
|
* To be used instead of the weak predefined callback
|
||
|
* @param hadc Pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param CallbackID ID of the callback to be registered
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
|
||
|
* @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
|
||
|
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
|
||
|
* @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
|
||
|
* @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
|
||
|
* @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
|
||
|
* @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
|
||
|
* @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
|
||
|
* @param pCallback pointer to the Callback function
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_OK;
|
||
|
|
||
|
if (pCallback == NULL)
|
||
|
{
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
return HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
|
||
|
hadc->ConvCpltCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_CONVERSION_HALF_CB_ID :
|
||
|
hadc->ConvHalfCpltCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
|
||
|
hadc->LevelOutOfWindowCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_ERROR_CB_ID :
|
||
|
hadc->ErrorCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
|
||
|
hadc->InjectedConvCpltCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_MSPINIT_CB_ID :
|
||
|
hadc->MspInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_MSPDEINIT_CB_ID :
|
||
|
hadc->MspDeInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (HAL_ADC_STATE_RESET == hadc->State)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_ADC_MSPINIT_CB_ID :
|
||
|
hadc->MspInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_MSPDEINIT_CB_ID :
|
||
|
hadc->MspDeInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Unregister a ADC Callback
|
||
|
* ADC callback is redirected to the weak predefined callback
|
||
|
* @param hadc Pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param CallbackID ID of the callback to be unregistered
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
|
||
|
* @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
|
||
|
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
|
||
|
* @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
|
||
|
* @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
|
||
|
* @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
|
||
|
* @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
|
||
|
* @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_OK;
|
||
|
|
||
|
if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
|
||
|
hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_CONVERSION_HALF_CB_ID :
|
||
|
hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
|
||
|
hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_ERROR_CB_ID :
|
||
|
hadc->ErrorCallback = HAL_ADC_ErrorCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
|
||
|
hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_MSPINIT_CB_ID :
|
||
|
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_MSPDEINIT_CB_ID :
|
||
|
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (HAL_ADC_STATE_RESET == hadc->State)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_ADC_MSPINIT_CB_ID :
|
||
|
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
|
||
|
break;
|
||
|
|
||
|
case HAL_ADC_MSPDEINIT_CB_ID :
|
||
|
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Update the error code */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
|
||
|
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
|
||
|
* @brief IO operation functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### IO operation functions #####
|
||
|
===============================================================================
|
||
|
[..] This section provides functions allowing to:
|
||
|
(+) Start conversion of regular channel.
|
||
|
(+) Stop conversion of regular channel.
|
||
|
(+) Start conversion of regular channel and enable interrupt.
|
||
|
(+) Stop conversion of regular channel and disable interrupt.
|
||
|
(+) Start conversion of regular channel and enable DMA transfer.
|
||
|
(+) Stop conversion of regular channel and disable DMA transfer.
|
||
|
(+) Handle ADC interrupt request.
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Enables ADC and starts conversion of the regular channels.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
__IO uint32_t counter = 0;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
||
|
assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* Enable the ADC peripheral */
|
||
|
/* Check if ADC peripheral is disabled in order to enable it and wait during
|
||
|
Tstab time the ADC's stabilization */
|
||
|
if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
|
||
|
{
|
||
|
/* Enable the Peripheral */
|
||
|
__HAL_ADC_ENABLE(hadc);
|
||
|
|
||
|
/* Delay for ADC stabilization time */
|
||
|
/* Compute number of CPU cycles to wait for */
|
||
|
counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000));
|
||
|
while(counter != 0)
|
||
|
{
|
||
|
counter--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Start conversion if ADC is effectively enabled */
|
||
|
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
/* - Clear state bitfield related to regular group conversion results */
|
||
|
/* - Set state bitfield related to regular group operation */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
|
||
|
HAL_ADC_STATE_REG_BUSY);
|
||
|
|
||
|
/* If conversions on group regular are also triggering group injected, */
|
||
|
/* update ADC state. */
|
||
|
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
|
||
|
{
|
||
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
||
|
}
|
||
|
|
||
|
/* State machine update: Check if an injected conversion is ongoing */
|
||
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
||
|
{
|
||
|
/* Reset ADC error code fields related to conversions on group regular */
|
||
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Reset ADC all error code fields */
|
||
|
ADC_CLEAR_ERRORCODE(hadc);
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
/* Unlock before starting ADC conversions: in case of potential */
|
||
|
/* interruption, to let the process to ADC IRQ Handler. */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Clear regular group conversion flag and overrun flag */
|
||
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
|
||
|
|
||
|
/* Check if Multimode enabled */
|
||
|
if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI))
|
||
|
{
|
||
|
/* if no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
|
||
|
/* if dual mode is selected, ADC3 works independently. */
|
||
|
/* check if the mode selected is not triple */
|
||
|
if( HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI_4) )
|
||
|
{
|
||
|
/* if instance of handle correspond to ADC3 and no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance == ADC3) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Update ADC state machine to error */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
||
|
|
||
|
/* Set ADC error code to ADC IP internal error */
|
||
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
||
|
}
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Disables ADC and stop conversion of regular channels.
|
||
|
*
|
||
|
* @note Caution: This function will stop also injected channels.
|
||
|
*
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
*
|
||
|
* @retval HAL status.
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* Stop potential conversion on going, on regular and injected groups */
|
||
|
/* Disable ADC peripheral */
|
||
|
__HAL_ADC_DISABLE(hadc);
|
||
|
|
||
|
/* Check if ADC is effectively disabled */
|
||
|
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
||
|
HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Poll for regular conversion complete
|
||
|
* @note ADC conversion flags EOS (end of sequence) and EOC (end of
|
||
|
* conversion) are cleared by this function.
|
||
|
* @note This function cannot be used in a particular setup: ADC configured
|
||
|
* in DMA mode and polling for end of each conversion (ADC init
|
||
|
* parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
|
||
|
* In this case, DMA resets the flag EOC and polling cannot be
|
||
|
* performed on each conversion. Nevertheless, polling can still
|
||
|
* be performed on the complete sequence.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param Timeout Timeout value in millisecond.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
|
||
|
{
|
||
|
uint32_t tickstart = 0;
|
||
|
|
||
|
/* Verification that ADC configuration is compliant with polling for */
|
||
|
/* each conversion: */
|
||
|
/* Particular case is ADC configured in DMA mode and ADC sequencer with */
|
||
|
/* several ranks and polling for end of each conversion. */
|
||
|
/* For code simplicity sake, this particular case is generalized to */
|
||
|
/* ADC configured in DMA mode and polling for end of each conversion. */
|
||
|
if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) &&
|
||
|
HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA) )
|
||
|
{
|
||
|
/* Update ADC state machine to error */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
return HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Get tick */
|
||
|
tickstart = HAL_GetTick();
|
||
|
|
||
|
/* Check End of conversion flag */
|
||
|
while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC)))
|
||
|
{
|
||
|
/* Check if timeout is disabled (set to infinite wait) */
|
||
|
if(Timeout != HAL_MAX_DELAY)
|
||
|
{
|
||
|
if((Timeout == 0) || ((HAL_GetTick() - tickstart ) > Timeout))
|
||
|
{
|
||
|
/* New check to avoid false timeout detection in case of preemption */
|
||
|
if(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC)))
|
||
|
{
|
||
|
/* Update ADC state machine to timeout */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Clear regular group conversion flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
|
||
|
|
||
|
/* Update ADC state machine */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
||
|
|
||
|
/* Determine whether any further conversion upcoming on group regular */
|
||
|
/* by external trigger, continuous mode or scan sequence on going. */
|
||
|
/* Note: On STM32F7, there is no independent flag of end of sequence. */
|
||
|
/* The test of scan sequence on going is done either with scan */
|
||
|
/* sequence disabled or with end of conversion flag set to */
|
||
|
/* of end of sequence. */
|
||
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
||
|
(hadc->Init.ContinuousConvMode == DISABLE) &&
|
||
|
(HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
|
||
|
HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) )
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
||
|
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
||
|
{
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Return ADC state */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Poll for conversion event
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param EventType the ADC event type.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg ADC_AWD_EVENT: ADC Analog watch Dog event.
|
||
|
* @arg ADC_OVR_EVENT: ADC Overrun event.
|
||
|
* @param Timeout Timeout value in millisecond.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
|
||
|
{
|
||
|
uint32_t tickstart = 0;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
||
|
assert_param(IS_ADC_EVENT_TYPE(EventType));
|
||
|
|
||
|
/* Get tick */
|
||
|
tickstart = HAL_GetTick();
|
||
|
|
||
|
/* Check selected event flag */
|
||
|
while(!(__HAL_ADC_GET_FLAG(hadc,EventType)))
|
||
|
{
|
||
|
/* Check for the Timeout */
|
||
|
if(Timeout != HAL_MAX_DELAY)
|
||
|
{
|
||
|
if((Timeout == 0) || ((HAL_GetTick() - tickstart ) > Timeout))
|
||
|
{
|
||
|
/* New check to avoid false timeout detection in case of preemption */
|
||
|
if(!(__HAL_ADC_GET_FLAG(hadc,EventType)))
|
||
|
{
|
||
|
/* Update ADC state machine to timeout */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Analog watchdog (level out of window) event */
|
||
|
if(EventType == ADC_AWD_EVENT)
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
||
|
|
||
|
/* Clear ADC analog watchdog flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
|
||
|
}
|
||
|
/* Overrun event */
|
||
|
else
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
|
||
|
/* Set ADC error code to overrun */
|
||
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
|
||
|
|
||
|
/* Clear ADC overrun flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
||
|
}
|
||
|
|
||
|
/* Return ADC state */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Enables the interrupt and starts ADC conversion of regular channels.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL status.
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
__IO uint32_t counter = 0;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
||
|
assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* Enable the ADC peripheral */
|
||
|
/* Check if ADC peripheral is disabled in order to enable it and wait during
|
||
|
Tstab time the ADC's stabilization */
|
||
|
if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
|
||
|
{
|
||
|
/* Enable the Peripheral */
|
||
|
__HAL_ADC_ENABLE(hadc);
|
||
|
|
||
|
/* Delay for ADC stabilization time */
|
||
|
/* Compute number of CPU cycles to wait for */
|
||
|
counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000));
|
||
|
while(counter != 0)
|
||
|
{
|
||
|
counter--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Start conversion if ADC is effectively enabled */
|
||
|
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
/* - Clear state bitfield related to regular group conversion results */
|
||
|
/* - Set state bitfield related to regular group operation */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
|
||
|
HAL_ADC_STATE_REG_BUSY);
|
||
|
|
||
|
/* If conversions on group regular are also triggering group injected, */
|
||
|
/* update ADC state. */
|
||
|
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
|
||
|
{
|
||
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
||
|
}
|
||
|
|
||
|
/* State machine update: Check if an injected conversion is ongoing */
|
||
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
||
|
{
|
||
|
/* Reset ADC error code fields related to conversions on group regular */
|
||
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Reset ADC all error code fields */
|
||
|
ADC_CLEAR_ERRORCODE(hadc);
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
/* Unlock before starting ADC conversions: in case of potential */
|
||
|
/* interruption, to let the process to ADC IRQ Handler. */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Clear regular group conversion flag and overrun flag */
|
||
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
|
||
|
|
||
|
/* Enable end of conversion interrupt for regular group */
|
||
|
__HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
|
||
|
|
||
|
/* Check if Multimode enabled */
|
||
|
if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI))
|
||
|
{
|
||
|
/* if no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
|
||
|
/* if dual mode is selected, ADC3 works independently. */
|
||
|
/* check if the mode selected is not triple */
|
||
|
if( HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI_4) )
|
||
|
{
|
||
|
/* if instance of handle correspond to ADC3 and no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance == ADC3) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Update ADC state machine to error */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
||
|
|
||
|
/* Set ADC error code to ADC IP internal error */
|
||
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
||
|
}
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Disables the interrupt and stop ADC conversion of regular channels.
|
||
|
*
|
||
|
* @note Caution: This function will stop also injected channels.
|
||
|
*
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL status.
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* Stop potential conversion on going, on regular and injected groups */
|
||
|
/* Disable ADC peripheral */
|
||
|
__HAL_ADC_DISABLE(hadc);
|
||
|
|
||
|
/* Check if ADC is effectively disabled */
|
||
|
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
/* Disable ADC end of conversion interrupt for regular group */
|
||
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
|
||
|
|
||
|
/* Set ADC state */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
||
|
HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Handles ADC interrupt request
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
uint32_t tmp1 = 0, tmp2 = 0;
|
||
|
|
||
|
uint32_t tmp_sr = hadc->Instance->SR;
|
||
|
uint32_t tmp_cr1 = hadc->Instance->CR1;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
||
|
assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
|
||
|
assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
|
||
|
|
||
|
tmp1 = tmp_sr & ADC_FLAG_EOC;
|
||
|
tmp2 = tmp_cr1 & ADC_IT_EOC;
|
||
|
|
||
|
/* Check End of conversion flag for regular channels */
|
||
|
if(tmp1 && tmp2)
|
||
|
{
|
||
|
/* Update state machine on conversion status if not in error state */
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
||
|
}
|
||
|
|
||
|
/* Determine whether any further conversion upcoming on group regular */
|
||
|
/* by external trigger, continuous mode or scan sequence on going. */
|
||
|
/* Note: On STM32F7, there is no independent flag of end of sequence. */
|
||
|
/* The test of scan sequence on going is done either with scan */
|
||
|
/* sequence disabled or with end of conversion flag set to */
|
||
|
/* of end of sequence. */
|
||
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
||
|
(hadc->Init.ContinuousConvMode == DISABLE) &&
|
||
|
(HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
|
||
|
HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) )
|
||
|
{
|
||
|
/* Disable ADC end of single conversion interrupt on group regular */
|
||
|
/* Note: Overrun interrupt was enabled with EOC interrupt in */
|
||
|
/* HAL_ADC_Start_IT(), but is not disabled here because can be used */
|
||
|
/* by overrun IRQ process below. */
|
||
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
|
||
|
|
||
|
/* Set ADC state */
|
||
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
||
|
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
||
|
{
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Conversion complete callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->ConvCpltCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_ConvCpltCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
/* Clear regular group conversion flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
|
||
|
}
|
||
|
|
||
|
tmp1 = tmp_sr & ADC_FLAG_JEOC;
|
||
|
tmp2 = tmp_cr1 & ADC_IT_JEOC;
|
||
|
/* Check End of conversion flag for injected channels */
|
||
|
if(tmp1 && tmp2)
|
||
|
{
|
||
|
/* Update state machine on conversion status if not in error state */
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
|
||
|
}
|
||
|
|
||
|
/* Determine whether any further conversion upcoming on group injected */
|
||
|
/* by external trigger, scan sequence on going or by automatic injected */
|
||
|
/* conversion from group regular (same conditions as group regular */
|
||
|
/* interruption disabling above). */
|
||
|
if(ADC_IS_SOFTWARE_START_INJECTED(hadc) &&
|
||
|
(HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL) ||
|
||
|
HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)) &&
|
||
|
(HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
|
||
|
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
||
|
(hadc->Init.ContinuousConvMode == DISABLE))))
|
||
|
{
|
||
|
/* Disable ADC end of single conversion interrupt on group injected */
|
||
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
|
||
|
|
||
|
/* Set ADC state */
|
||
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
||
|
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
||
|
{
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Conversion complete callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->InjectedConvCpltCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADCEx_InjectedConvCpltCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
/* Clear injected group conversion flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
|
||
|
}
|
||
|
|
||
|
tmp1 = tmp_sr & ADC_FLAG_AWD;
|
||
|
tmp2 = tmp_cr1 & ADC_IT_AWD;
|
||
|
/* Check Analog watchdog flag */
|
||
|
if(tmp1 && tmp2)
|
||
|
{
|
||
|
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
||
|
|
||
|
/* Level out of window callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->LevelOutOfWindowCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_LevelOutOfWindowCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
|
||
|
/* Clear the ADC analog watchdog flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
tmp1 = tmp_sr & ADC_FLAG_OVR;
|
||
|
tmp2 = tmp_cr1 & ADC_IT_OVR;
|
||
|
/* Check Overrun flag */
|
||
|
if(tmp1 && tmp2)
|
||
|
{
|
||
|
/* Note: On STM32F7, ADC overrun can be set through other parameters */
|
||
|
/* refer to description of parameter "EOCSelection" for more */
|
||
|
/* details. */
|
||
|
|
||
|
/* Set ADC error code to overrun */
|
||
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
|
||
|
|
||
|
/* Clear ADC overrun flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
||
|
|
||
|
/* Error callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->ErrorCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_ErrorCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
|
||
|
/* Clear the Overrun flag */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param pData The destination Buffer address.
|
||
|
* @param Length The length of data to be transferred from ADC peripheral to memory.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
|
||
|
{
|
||
|
__IO uint32_t counter = 0;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
||
|
assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* Enable the ADC peripheral */
|
||
|
/* Check if ADC peripheral is disabled in order to enable it and wait during
|
||
|
Tstab time the ADC's stabilization */
|
||
|
if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
|
||
|
{
|
||
|
/* Enable the Peripheral */
|
||
|
__HAL_ADC_ENABLE(hadc);
|
||
|
|
||
|
/* Delay for ADC stabilization time */
|
||
|
/* Compute number of CPU cycles to wait for */
|
||
|
counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000));
|
||
|
while(counter != 0)
|
||
|
{
|
||
|
counter--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Start conversion if ADC is effectively enabled */
|
||
|
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
/* Set ADC state */
|
||
|
/* - Clear state bitfield related to regular group conversion results */
|
||
|
/* - Set state bitfield related to regular group operation */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
|
||
|
HAL_ADC_STATE_REG_BUSY);
|
||
|
|
||
|
/* If conversions on group regular are also triggering group injected, */
|
||
|
/* update ADC state. */
|
||
|
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
|
||
|
{
|
||
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
||
|
}
|
||
|
|
||
|
/* State machine update: Check if an injected conversion is ongoing */
|
||
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
||
|
{
|
||
|
/* Reset ADC error code fields related to conversions on group regular */
|
||
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Reset ADC all error code fields */
|
||
|
ADC_CLEAR_ERRORCODE(hadc);
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
/* Unlock before starting ADC conversions: in case of potential */
|
||
|
/* interruption, to let the process to ADC IRQ Handler. */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Set the DMA transfer complete callback */
|
||
|
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
|
||
|
|
||
|
/* Set the DMA half transfer complete callback */
|
||
|
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
|
||
|
|
||
|
/* Set the DMA error callback */
|
||
|
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
|
||
|
|
||
|
|
||
|
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
|
||
|
/* start (in case of SW start): */
|
||
|
|
||
|
/* Clear regular group conversion flag and overrun flag */
|
||
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
||
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
|
||
|
|
||
|
/* Enable ADC overrun interrupt */
|
||
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
|
||
|
|
||
|
/* Enable ADC DMA mode */
|
||
|
hadc->Instance->CR2 |= ADC_CR2_DMA;
|
||
|
|
||
|
/* Start the DMA channel */
|
||
|
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
|
||
|
|
||
|
/* Check if Multimode enabled */
|
||
|
if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI))
|
||
|
{
|
||
|
/* if no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
/* if dual mode is selected, ADC3 works independently. */
|
||
|
/* check if the mode selected is not triple */
|
||
|
if( HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI_4) )
|
||
|
{
|
||
|
/* if instance of handle correspond to ADC3 and no external trigger present enable software conversion of regular channels */
|
||
|
if((hadc->Instance == ADC3) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
|
||
|
{
|
||
|
/* Enable the selected ADC software conversion for regular group */
|
||
|
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Update ADC state machine to error */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
||
|
|
||
|
/* Set ADC error code to ADC IP internal error */
|
||
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
||
|
}
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Disables ADC DMA (Single-ADC mode) and disables ADC peripheral
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* Stop potential conversion on going, on regular and injected groups */
|
||
|
/* Disable ADC peripheral */
|
||
|
__HAL_ADC_DISABLE(hadc);
|
||
|
|
||
|
/* Check if ADC is effectively disabled */
|
||
|
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
|
||
|
{
|
||
|
/* Disable the selected ADC DMA mode */
|
||
|
hadc->Instance->CR2 &= ~ADC_CR2_DMA;
|
||
|
|
||
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
||
|
/* DMA transfer is on going) */
|
||
|
if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY)
|
||
|
{
|
||
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
||
|
|
||
|
/* Check if DMA channel effectively disabled */
|
||
|
if (tmp_hal_status != HAL_OK)
|
||
|
{
|
||
|
/* Update ADC state machine to error */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Disable ADC overrun interrupt */
|
||
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
||
|
|
||
|
/* Set ADC state */
|
||
|
ADC_STATE_CLR_SET(hadc->State,
|
||
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
||
|
HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return tmp_hal_status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Gets the converted value from data register of regular channel.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval Converted value
|
||
|
*/
|
||
|
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Return the selected ADC converted value */
|
||
|
return hadc->Instance->DR;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Regular conversion complete callback in non blocking mode
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hadc);
|
||
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
|
the HAL_ADC_ConvCpltCallback could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Regular conversion half DMA transfer callback in non blocking mode
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hadc);
|
||
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
|
the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Analog watchdog callback in non blocking mode
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hadc);
|
||
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
|
the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Error ADC callback.
|
||
|
* @note In case of error due to overrun when using ADC with DMA transfer
|
||
|
* (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
|
||
|
* - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
|
||
|
* - If needed, restart a new ADC conversion using function
|
||
|
* "HAL_ADC_Start_DMA()"
|
||
|
* (this function is also clearing overrun flag)
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hadc);
|
||
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
|
the HAL_ADC_ErrorCallback could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
|
||
|
* @brief Peripheral Control functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### Peripheral Control functions #####
|
||
|
===============================================================================
|
||
|
[..] This section provides functions allowing to:
|
||
|
(+) Configure regular channels.
|
||
|
(+) Configure injected channels.
|
||
|
(+) Configure multimode.
|
||
|
(+) Configure the analog watch dog.
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Configures for the selected ADC regular channel its corresponding
|
||
|
* rank in the sequencer and its sample time.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param sConfig ADC configuration structure.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
|
||
|
{
|
||
|
__IO uint32_t counter = 0;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_CHANNEL(sConfig->Channel));
|
||
|
assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
|
||
|
assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
/* if ADC_Channel_10 ... ADC_Channel_18 is selected */
|
||
|
if ((sConfig->Channel > ADC_CHANNEL_9) && (sConfig->Channel != ADC_INTERNAL_NONE))
|
||
|
{
|
||
|
/* Clear the old sample time */
|
||
|
hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel);
|
||
|
|
||
|
if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
|
||
|
{
|
||
|
/* Set the new sample time */
|
||
|
hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, ADC_CHANNEL_18);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Set the new sample time */
|
||
|
hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel);
|
||
|
}
|
||
|
}
|
||
|
else /* ADC_Channel include in ADC_Channel_[0..9] */
|
||
|
{
|
||
|
/* Clear the old sample time */
|
||
|
hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel);
|
||
|
|
||
|
/* Set the new sample time */
|
||
|
hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel);
|
||
|
}
|
||
|
|
||
|
/* For Rank 1 to 6 */
|
||
|
if (sConfig->Rank < 7)
|
||
|
{
|
||
|
/* Clear the old SQx bits for the selected rank */
|
||
|
hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank);
|
||
|
|
||
|
/* Set the SQx bits for the selected rank */
|
||
|
hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank);
|
||
|
}
|
||
|
/* For Rank 7 to 12 */
|
||
|
else if (sConfig->Rank < 13)
|
||
|
{
|
||
|
/* Clear the old SQx bits for the selected rank */
|
||
|
hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank);
|
||
|
|
||
|
/* Set the SQx bits for the selected rank */
|
||
|
hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank);
|
||
|
}
|
||
|
/* For Rank 13 to 16 */
|
||
|
else
|
||
|
{
|
||
|
/* Clear the old SQx bits for the selected rank */
|
||
|
hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank);
|
||
|
|
||
|
/* Set the SQx bits for the selected rank */
|
||
|
hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank);
|
||
|
}
|
||
|
|
||
|
/* if no internal channel selected */
|
||
|
if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_INTERNAL_NONE))
|
||
|
{
|
||
|
/* Disable the VBAT & TSVREFE channel*/
|
||
|
ADC->CCR &= ~(ADC_CCR_VBATE | ADC_CCR_TSVREFE);
|
||
|
}
|
||
|
|
||
|
/* if ADC1 Channel_18 is selected enable VBAT Channel */
|
||
|
if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT))
|
||
|
{
|
||
|
/* Disable the TEMPSENSOR channel as it is multiplixed with the VBAT channel */
|
||
|
ADC->CCR &= ~ADC_CCR_TSVREFE;
|
||
|
|
||
|
/* Enable the VBAT channel*/
|
||
|
ADC->CCR |= ADC_CCR_VBATE;
|
||
|
}
|
||
|
|
||
|
/* if ADC1 Channel_18 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */
|
||
|
if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT)))
|
||
|
{
|
||
|
/* Disable the VBAT channel as it is multiplixed with TEMPSENSOR channel */
|
||
|
ADC->CCR &= ~ADC_CCR_VBATE;
|
||
|
|
||
|
/* Enable the TSVREFE channel*/
|
||
|
ADC->CCR |= ADC_CCR_TSVREFE;
|
||
|
|
||
|
if(sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
|
||
|
{
|
||
|
/* Delay for temperature sensor stabilization time */
|
||
|
/* Compute number of CPU cycles to wait for */
|
||
|
counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000));
|
||
|
while(counter != 0)
|
||
|
{
|
||
|
counter--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Configures the analog watchdog.
|
||
|
* @note Analog watchdog thresholds can be modified while ADC conversion
|
||
|
* is on going.
|
||
|
* In this case, some constraints must be taken into account:
|
||
|
* the programmed threshold values are effective from the next
|
||
|
* ADC EOC (end of unitary conversion).
|
||
|
* Considering that registers write delay may happen due to
|
||
|
* bus activity, this might cause an uncertainty on the
|
||
|
* effective timing of the new programmed threshold values.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @param AnalogWDGConfig pointer to an ADC_AnalogWDGConfTypeDef structure
|
||
|
* that contains the configuration information of ADC analog watchdog.
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
|
||
|
{
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
uint32_t tmp = 0;
|
||
|
#endif /* USE_FULL_ASSERT */
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode));
|
||
|
assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
|
||
|
assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
tmp = ADC_GET_RESOLUTION(hadc);
|
||
|
assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold));
|
||
|
assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold));
|
||
|
#endif /* USE_FULL_ASSERT */
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hadc);
|
||
|
|
||
|
if(AnalogWDGConfig->ITMode == ENABLE)
|
||
|
{
|
||
|
/* Enable the ADC Analog watchdog interrupt */
|
||
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Disable the ADC Analog watchdog interrupt */
|
||
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
|
||
|
}
|
||
|
|
||
|
/* Clear AWDEN, JAWDEN and AWDSGL bits */
|
||
|
hadc->Instance->CR1 &= ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN);
|
||
|
|
||
|
/* Set the analog watchdog enable mode */
|
||
|
hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode;
|
||
|
|
||
|
/* Set the high threshold */
|
||
|
hadc->Instance->HTR = AnalogWDGConfig->HighThreshold;
|
||
|
|
||
|
/* Set the low threshold */
|
||
|
hadc->Instance->LTR = AnalogWDGConfig->LowThreshold;
|
||
|
|
||
|
/* Clear the Analog watchdog channel select bits */
|
||
|
hadc->Instance->CR1 &= ~ADC_CR1_AWDCH;
|
||
|
|
||
|
/* Set the Analog watchdog channel */
|
||
|
hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel));
|
||
|
|
||
|
/* Process unlocked */
|
||
|
__HAL_UNLOCK(hadc);
|
||
|
|
||
|
/* Return function status */
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions
|
||
|
* @brief ADC Peripheral State functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### Peripheral State and errors functions #####
|
||
|
===============================================================================
|
||
|
[..]
|
||
|
This subsection provides functions allowing to
|
||
|
(+) Check the ADC state
|
||
|
(+) Check the ADC Error
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief return the ADC state
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval HAL state
|
||
|
*/
|
||
|
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Return ADC state */
|
||
|
return hadc->State;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Return the ADC error code
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval ADC Error Code
|
||
|
*/
|
||
|
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
|
||
|
{
|
||
|
return hadc->ErrorCode;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/* Private functions ---------------------------------------------------------*/
|
||
|
|
||
|
/** @defgroup ADC_Private_Functions ADC Private Functions
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Initializes the ADCx peripheral according to the specified parameters
|
||
|
* in the ADC_InitStruct without initializing the ADC MSP.
|
||
|
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified ADC.
|
||
|
* @retval None
|
||
|
*/
|
||
|
static void ADC_Init(ADC_HandleTypeDef* hadc)
|
||
|
{
|
||
|
/* Set ADC parameters */
|
||
|
/* Set the ADC clock prescaler */
|
||
|
ADC->CCR &= ~(ADC_CCR_ADCPRE);
|
||
|
ADC->CCR |= hadc->Init.ClockPrescaler;
|
||
|
|
||
|
/* Set ADC scan mode */
|
||
|
hadc->Instance->CR1 &= ~(ADC_CR1_SCAN);
|
||
|
hadc->Instance->CR1 |= ADC_CR1_SCANCONV(hadc->Init.ScanConvMode);
|
||
|
|
||
|
/* Set ADC resolution */
|
||
|
hadc->Instance->CR1 &= ~(ADC_CR1_RES);
|
||
|
hadc->Instance->CR1 |= hadc->Init.Resolution;
|
||
|
|
||
|
/* Set ADC data alignment */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN);
|
||
|
hadc->Instance->CR2 |= hadc->Init.DataAlign;
|
||
|
|
||
|
/* Enable external trigger if trigger selection is different of software */
|
||
|
/* start. */
|
||
|
/* Note: This configuration keeps the hardware feature of parameter */
|
||
|
/* ExternalTrigConvEdge "trigger edge none" equivalent to */
|
||
|
/* software start. */
|
||
|
if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
|
||
|
{
|
||
|
/* Select external trigger to start conversion */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
|
||
|
hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv;
|
||
|
|
||
|
/* Select external trigger polarity */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
|
||
|
hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Reset the external trigger */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
|
||
|
}
|
||
|
|
||
|
/* Enable or disable ADC continuous conversion mode */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_CONT);
|
||
|
hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode);
|
||
|
|
||
|
if(hadc->Init.DiscontinuousConvMode != DISABLE)
|
||
|
{
|
||
|
assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion));
|
||
|
|
||
|
/* Enable the selected ADC regular discontinuous mode */
|
||
|
hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN;
|
||
|
|
||
|
/* Set the number of channels to be converted in discontinuous mode */
|
||
|
hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM);
|
||
|
hadc->Instance->CR1 |= ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Disable the selected ADC regular discontinuous mode */
|
||
|
hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN);
|
||
|
}
|
||
|
|
||
|
/* Set ADC number of conversion */
|
||
|
hadc->Instance->SQR1 &= ~(ADC_SQR1_L);
|
||
|
hadc->Instance->SQR1 |= ADC_SQR1(hadc->Init.NbrOfConversion);
|
||
|
|
||
|
/* Enable or disable ADC DMA continuous request */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_DDS);
|
||
|
hadc->Instance->CR2 |= ADC_CR2_DMAContReq((uint32_t)hadc->Init.DMAContinuousRequests);
|
||
|
|
||
|
/* Enable or disable ADC end of conversion selection */
|
||
|
hadc->Instance->CR2 &= ~(ADC_CR2_EOCS);
|
||
|
hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief DMA transfer complete callback.
|
||
|
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified DMA module.
|
||
|
* @retval None
|
||
|
*/
|
||
|
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
|
||
|
{
|
||
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
||
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
||
|
|
||
|
/* Update state machine on conversion status if not in error state */
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
|
||
|
{
|
||
|
/* Update ADC state machine */
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
||
|
|
||
|
/* Determine whether any further conversion upcoming on group regular */
|
||
|
/* by external trigger, continuous mode or scan sequence on going. */
|
||
|
/* Note: On STM32F7, there is no independent flag of end of sequence. */
|
||
|
/* The test of scan sequence on going is done either with scan */
|
||
|
/* sequence disabled or with end of conversion flag set to */
|
||
|
/* of end of sequence. */
|
||
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
||
|
(hadc->Init.ContinuousConvMode == DISABLE) &&
|
||
|
(HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
|
||
|
HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) )
|
||
|
{
|
||
|
/* Disable ADC end of single conversion interrupt on group regular */
|
||
|
/* Note: Overrun interrupt was enabled with EOC interrupt in */
|
||
|
/* HAL_ADC_Start_IT(), but is not disabled here because can be used */
|
||
|
/* by overrun IRQ process below. */
|
||
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
|
||
|
|
||
|
/* Set ADC state */
|
||
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
||
|
|
||
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
||
|
{
|
||
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Conversion complete callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->ConvCpltCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_ConvCpltCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
}
|
||
|
else /* DMA and-or internal error occurred */
|
||
|
{
|
||
|
if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL)
|
||
|
{
|
||
|
/* Call HAL ADC Error Callback function */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->ErrorCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_ErrorCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Call DMA error callback */
|
||
|
hadc->DMA_Handle->XferErrorCallback(hdma);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief DMA half transfer complete callback.
|
||
|
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified DMA module.
|
||
|
* @retval None
|
||
|
*/
|
||
|
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
|
||
|
{
|
||
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
||
|
/* Half conversion callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->ConvHalfCpltCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_ConvHalfCpltCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief DMA error callback
|
||
|
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||
|
* the configuration information for the specified DMA module.
|
||
|
* @retval None
|
||
|
*/
|
||
|
static void ADC_DMAError(DMA_HandleTypeDef *hdma)
|
||
|
{
|
||
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
||
|
hadc->State= HAL_ADC_STATE_ERROR_DMA;
|
||
|
/* Set ADC error code to DMA error */
|
||
|
hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
|
||
|
/* Error callback */
|
||
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
||
|
hadc->ErrorCallback(hadc);
|
||
|
#else
|
||
|
HAL_ADC_ErrorCallback(hadc);
|
||
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
#endif /* HAL_ADC_MODULE_ENABLED */
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|