# NEORV32 Test Setup using the NEORV32 with AvalonMM Master Interface wrapper This setup provides a very simple "demo setup" that uses the NEORV32 with a AvalonMM Interface wrapper. This makes if possible to connect you own modules using a simple version of the AvalonMM Master interface. Note that the AvalonMM Master is a very simple version providing only basic features: * Single read and write access * Flow control (variable wait-states) * 8/16/32 bit data access * Aligned and unaligned access supported The AvalonMM Master does **not** support: * Burst access * Pipeline transfer * Pending reads The design is based on the de0-nano-test-setup, but added a AvalonMM Master wrapper. The wrapper file can be found here [`AvalonMM wrapper`](../../../rtl/system_integration/neorv32_SystemTop_AvalonMM.vhd). As a test an "external" DMEM is conneced to the NEORV32 over the AvalonMM Master Interface. It uses the simplified and simple example top entity that provides a minimalistic interface (clock, reset, UART and 8 LEDs). * FPGA Board: :books: [Terasic DE0-Nano FPGA Board](https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593) * FPGA: Intel Cyclone-IV `EP4CE22F17C6N` * Toolchain: Intel Quartus Prime (tested with Quartus Prime 18.1.1 - Lite Edition) ### NEORV32 Configuration For NEORV32 configuration the default values of the neorv32_top in version 1.6.0 are used with a few exceptions: * Memory: 16kB instruction memory (internal IMEM), 8kB data memory (external DMEM), No bootloader * Tested with version [`1.6.0`](https://github.com/stnolting/neorv32/blob/master/CHANGELOG.md) * Clock: 50MHz from on-board oscillator * Reset: via on-board button "KEY0" * GPIO output port `gpio_o` (8-bit) connected to the 8 green user LEDs ("LED7" - "LED0") * UART0 signals `uart0_txd_o` and `uart0_rxd_i` are connected to the 40-pin **GPIO_0** header * `uart0_txd_o:` output, connected to FPGA pin `C3` - header pin `GPIO_01` (pin number "4") * `uart0_rxd_i:` input, connected to FPGA pin `A3` - header pin `GPIO_03` (pin number "6") ### FPGA Utilization ``` Total logic elements 3,439 / 22,320 ( 15 % ) Total registers 1674 Total pins 12 / 154 ( 8 % ) Total virtual pins 0 Total memory bits 197,632 / 608,256 ( 32 % ) Embedded Multiplier 9-bit elements 0 / 132 ( 0 % ) Total PLLs 0 / 4 ( 0 % ) ``` ## How To Run Open the Quartus project file, compile and upload to FPGA.