
The NEORV32 RISC-V Processor
Datasheet

Version v1.7.1-r133-g89629488

Documentation

The online documentation of the project (a.k.a. the data sheet) is available on
GitHub-pages: https://stnolting.github.io/neorv32/

The online documentation of the software framework is also available on GitHub-
pages: https://stnolting.github.io/neorv32/sw/files.html

The NEORV32 RISC-V Processor Visit on GitHub

1 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/
https://stnolting.github.io/neorv32/sw/files.html
https://github.com/stnolting/neorv32

Table of Contents
1. Overview . 9

1.1. Rationale. 10

1.2. Project Key Features . 11

1.3. Project Folder Structure . 14

1.4. VHDL File Hierarchy . 15

1.5. FPGA Implementation Results. 18

1.5.1. CPU . 18

1.5.2. Processor - Modules . 19

1.5.3. Exemplary Setups . 21

1.6. CPU Performance . 22

2. NEORV32 Processor (SoC). 24

2.1. Processor Top Entity - Signals . 26

2.2. Processor Top Entity - Generics. 29

2.2.1. General . 30

CLOCK_FREQUENCY. 30

INT_BOOTLOADER_EN . 30

HW_THREAD_ID . 30

ON_CHIP_DEBUGGER_EN . 30

2.2.2. RISC-V CPU Extensions. 30

CPU_EXTENSION_RISCV_B . 30

CPU_EXTENSION_RISCV_C . 31

CPU_EXTENSION_RISCV_E . 31

CPU_EXTENSION_RISCV_M. 31

CPU_EXTENSION_RISCV_U . 31

CPU_EXTENSION_RISCV_Zfinx . 31

CPU_EXTENSION_RISCV_Zicsr . 31

CPU_EXTENSION_RISCV_Zicntr . 32

CPU_EXTENSION_RISCV_Zihpm. 32

CPU_EXTENSION_RISCV_Zifencei . 32

CPU_EXTENSION_RISCV_Zmmul . 32

CPU_EXTENSION_RISCV_Zxcfu . 32

2.2.3. Tuning Options . 32

FAST_MUL_EN . 32

FAST_SHIFT_EN . 33

CPU_CNT_WIDTH . 33

CPU_IPB_ENTRIES. 33

2.2.4. Physical Memory Protection (PMP) . 33

The NEORV32 Processor Visit on GitHub

2 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

PMP_NUM_REGIONS . 33

PMP_MIN_GRANULARITY. 34

2.2.5. Hardware Performance Monitors (HPM) . 34

HPM_NUM_CNTS. 34

HPM_CNT_WIDTH. 34

2.2.6. Internal Instruction Memory . 34

MEM_INT_IMEM_EN . 34

MEM_INT_IMEM_SIZE . 34

2.2.7. Internal Data Memory . 34

MEM_INT_DMEM_EN . 35

MEM_INT_DMEM_SIZE . 35

2.2.8. Internal Cache Memory. 35

ICACHE_EN . 35

ICACHE_NUM_BLOCKS . 35

ICACHE_BLOCK_SIZE . 35

ICACHE_ASSOCIATIVITY . 35

2.2.9. External Memory Interface . 35

MEM_EXT_EN. 36

MEM_EXT_TIMEOUT . 36

MEM_EXT_PIPE_MODE . 36

MEM_EXT_BIG_ENDIAN . 36

MEM_EXT_ASYNC_RX . 36

2.2.10. Stream Link Interface . 36

SLINK_NUM_TX . 36

SLINK_NUM_RX . 36

SLINK_TX_FIFO . 37

SLINK_RX_FIFO . 37

2.2.11. External Interrupt Controller . 37

XIRQ_NUM_CH . 37

XIRQ_TRIGGER_TYPE . 37

XIRQ_TRIGGER_POLARITY . 37

2.2.12. Processor Peripheral/IO Modules . 37

IO_GPIO_EN . 37

IO_MTIME_EN . 38

IO_UART0_EN . 38

IO_UART0_RX_FIFO . 38

IO_UART0_TX_FIFO. 38

IO_UART1_EN . 38

IO_UART1_RX_FIFO . 38

The NEORV32 RISC-V Processor Visit on GitHub

3 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

IO_UART1_TX_FIFO. 39

IO_SPI_EN . 39

IO_TWI_EN . 39

IO_PWM_NUM_CH . 39

IO_WDT_EN . 39

IO_TRNG_EN . 39

IO_TRNG_FIFO . 39

IO_CFS_EN. 40

IO_CFS_CONFIG . 40

IO_CFS_IN_SIZE . 40

IO_CFS_OUT_SIZE . 40

IO_NEOLED_EN . 40

IO_NEOLED_TX_FIFO . 40

IO_GPTMR_EN . 40

IO_XIP_EN . 41

2.3. Processor Interrupts . 42

2.3.1. RISC-V Standard Interrupts . 42

2.3.2. Platform External Interrupts . 42

2.3.3. NEORV32-Specific Fast Interrupt Requests. 43

2.4. Address Space . 44

2.4.1. CPU Data and Instruction Access . 44

2.4.2. Address Space Layout . 45

2.4.3. Memory Configuration . 46

Internal Memories . 47

External Memories . 47

2.4.4. Boot Configuration . 48

Indirect Boot. 49

Direct Boot . 49

2.5. Processor-Internal Modules . 50

2.5.1. Instruction Memory (IMEM) . 53

2.5.2. Data Memory (DMEM) . 54

2.5.3. Bootloader ROM (BOOTROM). 55

2.5.4. Processor-Internal Instruction Cache (iCACHE) . 56

2.5.5. Processor-External Memory Interface (WISHBONE) (AXI4-Lite) . 58

2.5.6. Internal Bus Monitor (BUSKEEPER) . 62

2.5.7. Stream Link Interface (SLINK). 64

2.5.8. General Purpose Input and Output Port (GPIO) . 74

2.5.9. Watchdog Timer (WDT). 75

2.5.10. Machine System Timer (MTIME). 78

The NEORV32 Processor Visit on GitHub

4 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.11. Primary Universal Asynchronous Receiver and Transmitter (UART0) 79

2.5.12. Secondary Universal Asynchronous Receiver and Transmitter (UART1) 85

2.5.13. Serial Peripheral Interface Controller (SPI) . 88

2.5.14. Two-Wire Serial Interface Controller (TWI). 92

2.5.15. Pulse-Width Modulation Controller (PWM) . 94

2.5.16. True Random-Number Generator (TRNG) . 97

2.5.17. Custom Functions Subsystem (CFS) . 99

2.5.18. Smart LED Interface (NEOLED). 102

2.5.19. External Interrupt Controller (XIRQ). 109

2.5.20. General Purpose Timer (GPTMR) . 111

2.5.21. Execute In Place Module (XIP). 113

2.5.22. System Configuration Information Memory (SYSINFO) . 119

SYSINFO - SoC Configuration . 120

SYSINFO - Cache Configuration . 121

3. NEORV32 Central Processing Unit (CPU) . 122

3.1. Architecture. 124

3.2. Full Virtualization . 125

3.3. RISC-V Compatibility . 125

3.3.1. RISC-V Incompatibility Issues and Limitations . 129

3.4. CPU Top Entity - Signals . 130

3.5. CPU Top Entity - Generics . 132

3.6. Instruction Sets and Extensions . 133

3.6.1. B - Bit-Manipulation Operations . 133

3.6.2. C - Compressed Instructions . 134

3.6.3. E - Embedded CPU. 134

3.6.4. I - Base Integer ISA . 134

3.6.5. M - Integer Multiplication and Division . 135

3.6.6. Zmmul - Integer Multiplication. 135

3.6.7. U - Less-Privileged User Mode . 136

3.6.8. X - NEORV32-Specific (Custom) Extensions. 136

3.6.9. Zfinx Single-Precision Floating-Point Operations . 136

3.6.10. Zicsr Control and Status Register Access / Privileged Architecture 137

3.6.11. Zicntr CPU Base Counters. 138

3.6.12. Zihpm Hardware Performance Monitors . 139

3.6.13. Zifencei Instruction Stream Synchronization. 139

3.6.14. Zxcfu Custom Instructions Extension (CFU) . 139

3.6.15. PMP Physical Memory Protection . 140

3.7. Custom Functions Unit (CFU). 142

3.7.1. Custom CFU Instructions - General. 142

The NEORV32 RISC-V Processor Visit on GitHub

5 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.7.2. Using Custom Instructions in Software . 143

3.7.3. Custom Instructions Hardware . 144

3.8. Instruction Timing . 146

3.9. Control and Status Registers (CSRs) . 148

3.9.1. Floating-Point CSRs. 153

fflags . 153

frm . 153

fcsr . 153

3.9.2. Machine Configuration CSRs . 154

menvcfg . 154

menvcfgh . 154

3.9.3. Machine Trap Setup CSRs . 155

mstatus . 155

misa . 155

mie . 156

mtvec . 156

mcounteren . 157

mstatush . 157

3.9.4. Machine Trap Handling CSRs . 159

mscratch . 159

mepc . 159

mcause . 159

mtval . 159

mip . 160

3.9.5. Machine Physical Memory Protection CSRs . 162

pmpcfg . 162

pmpaddr . 163

3.9.6. (Machine) Counter and Timer CSRs . 164

cycle[h] . 164

time[h] . 164

instret[h] . 165

mcycle[h] . 165

minstret[h] . 165

3.9.7. Hardware Performance Monitors (HPM) CSRs . 166

mhpmevent . 166

mhpmcounter[h] . 167

3.9.8. Machine Counter Setup CSRs . 169

mcountinhibit . 169

3.9.9. Machine Information CSRs. 170

The NEORV32 Processor Visit on GitHub

6 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

mvendorid . 170
marchid . 170

mimpid . 170

mhartid . 170

mconfigptr . 170

3.9.10. NEORV32-Specific CSRs . 171

mxisa . 171

3.9.11. Traps, Exceptions and Interrupts . 173

Memory Access Exceptions . 173

Custom Fast Interrupt Request Lines. 174

NEORV32 Trap Listing . 174

3.9.12. Bus Interface . 178

Protocol . 178

3.9.13. CPU Hardware Reset . 181

4. Software Framework . 183

4.1. Compiler Toolchain . 184

4.2. Core Libraries . 185

4.3. Application Makefile . 187

4.3.1. Targets . 187

4.3.2. Configuration. 188

4.3.3. Default Compiler Flags . 190

4.4. Executable Image Format. 191

4.4.1. Linker Script . 191

4.4.2. RAM Layout . 192

4.4.3. C Standard Library . 193

4.4.4. Executable Image Generator . 194

4.4.5. Start-Up Code (crt0) . 195

After-Main Handler . 196

4.5. Bootloader . 197

4.5.1. Bootloader SoC/CPU Requirements . 197

4.5.2. Bootloader Flash Requirements . 197

4.5.3. Bootloader Console. 198

4.5.4. Auto Boot Sequence . 201

4.5.5. Bootloader Error Codes . 201

4.6. NEORV32 Runtime Environment . 202

4.6.1. RTE Operation . 202

4.6.2. Using the RTE. 202

4.6.3. Default RTE Trap Handlers. 205

Bus Access Faults. 207

The NEORV32 RISC-V Processor Visit on GitHub

7 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

5. On-Chip Debugger (OCD) . 209

5.1. Debug Transport Module (DTM) . 211

5.2. Debug Module (DM) . 213

5.2.1. DM Registers . 213

data . 214

dmcontrol . 214

dmstatus . 215

hartinfo . 216

abstracts . 216

command . 217

abstractauto . 217

progbuf . 218

haltsum0 . 218

5.2.2. DM CPU Access . 218

5.3. CPU Debug Mode . 221

5.3.1. CPU Debug Mode CSRs. 222

dcsr . 222

dpc . 223

dscratch0 . 224

5.4. Trigger Module . 225

5.4.1. Trigger Module CSRs . 225

tselect . 225

tdata1 . 225

tdata2 . 226

tdata3 . 226

tinfo . 226

tcontrol . 227

mcontext . 227

scontext . 227

6. Legal . 229

License . 229

Proprietary Notice . 230

Disclaimer . 230

Limitation of Liability for External Links . 230

Citing. 230

Acknowledgments . 231

The NEORV32 Processor Visit on GitHub

8 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 1. Overview
The NEORV32[1] is an open-source RISC-V compatible processor system that is intended as ready-to-
go auxiliary processor within a larger SoC designs or as stand-alone custom / customizable
microcontroller.

The system is highly configurable and provides optional common peripherals like embedded
memories, timers, serial interfaces, general purpose IO ports and an external bus interface to
connect custom IP like memories, NoCs and other peripherals. On-line and in-system debugging is
supported by an OpenOCD/gdb compatible on-chip debugger accessible via JTAG.

Special focus is paid on execution safety to provide defined and predictable behavior at any time.
Therefore, the CPU ensures that all memory access are acknowledged and no invalid/malformed
instructions are executed. Whenever an unexpected situation occurs, the application code is
informed via hardware exceptions.

The software framework of the processor comes with application makefiles, software libraries for
all CPU and processor features, a bootloader, a runtime environment and several example
programs - including a port of the CoreMark MCU benchmark and the official RISC-V architecture
test suite. RISC-V GCC is used as default toolchain (prebuilt toolchains are also provided).

Check out the processor’s online User Guide that provides hands-on tutorials to get you started.

Structure

2. NEORV32 Processor (SoC)

3. NEORV32 Central Processing Unit (CPU)

4. Software Framework

5. On-Chip Debugger (OCD)

6. Legal

Annotations

Warning

Important

Note

Tip

The NEORV32 RISC-V Processor Visit on GitHub

9 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/riscv-gcc-prebuilt
https://stnolting.github.io/neorv32/ug
https://github.com/stnolting/neorv32

1.1. Rationale
Why did you make this?

Processor and CPU architecture designs are fascinating things: they are the magic frontier where
software meets hardware. This project started as something like a journey into this magic realm to
understand how things actually work down on this very low level and evolved over time to a
capable system on chip.

But there is more: when I started to dive into the emerging RISC-V ecosystem I felt overwhelmed by
the complexity. As a beginner it is hard to get an overview - especially when you want to setup a
minimal platform to tinker with… Which core to use? How to get the right toolchain? What features
do I need? How does booting work? How do I create an actual executable? How to get that into the
hardware? How to customize things? Where to start???

This project aims to provide a simple to understand and easy to use yet powerful and flexible
platform that targets FPGA and RISC-V beginners as well as advanced users.

Why a soft-core processor?

As a matter of fact soft-core processors cannot compete with discrete (like FPGA hard-macro)
processors in terms of performance, energy efficiency and size. But they do fill a niche in FPGA
design space: for example, soft-core processors allow to implement the control flow part of certain
applications (e.g. communication protocol handling) using software like plain C. This provides high
flexibility as software can be easily changed, re-compiled and re-uploaded again.

Furthermore, the concept of flexibility applies to all aspects of a soft-core processor. The user can
add exactly the features that are required by the application: additional memories, custom
interfaces, specialized co-processors and even user-defined instructions.

Why RISC-V?

RISC-V is a free and open ISA enabling a new era of processor innovation
through open standard collaboration.

— RISC-V International, https://riscv.org/about/

Open-source is a great thing! While open-source has already become quite popular in software,
hardware-focused projects still need to catch up. Admittedly, there has been quite a development,
but mainly in terms of platforms and applications (so schematics, PCBs, etc.). Although processors
and CPUs are the heart of almost every digital system, having a true open-source silicon is still a
rarity. RISC-V aims to change that - and even it is just one approach, it helps paving the road for
future development.

Furthermore, I highly appreciate the community aspect of RISC-V. The ISA and everything beyond is

The NEORV32 Processor Visit on GitHub

10 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

developed in direct contact with the community: this includes businesses and professionals but also
hobbyist, amateurs and people that are just curious. Everyone can join discussions and contribute
to RISC-V in their very own way.

Finally, I really like the RISC-V ISA itself. It aims to be a clean, orthogonal and "intuitive" ISA that
resembles with the basic concepts of RISC: simple yet effective.

Yet another RISC-V core? What makes it special?

The NEORV32 is not based on another RISC-V core. It was build entirely from ground up (just
following the official ISA specs). The project does not intend to replace certain RISC-V cores or just
beat existing ones like VexRISC in terms of performance or SERV in terms of size. It was build
having a different design goal in mind.

The project aims to provide another option in the RISC-V / soft-core design space with a different
performance vs. size trade-off and a different focus: embrace concepts like documentation,
platform-independence / portability, RISC-V compatibility, _ extensibility & customization_ and ease
of use (see the Project Key Features below).

Furthermore, the NEORV32 pays special focus on execution safety using Full Virtualization. The CPU
aims to provide fall-backs for everything that could go wrong. This includes malformed instruction
words, privilege escalations and even memory accesses that are checked for address space holes
and deterministic response times of memory-mapped devices. Precise exceptions allow a defined
and fully-synchronized state of the CPU at every time an in every situation.

1.2. Project Key Features
• all-in-one package: CPU + SoC + Software Framework & Tooling

• completely described in behavioral, platform-independent VHDL - no primitives, macros, etc.

• extensive configuration options for adapting the processor to the requirements of the
application

• highly [extensible hardware](https://stnolting.github.io/neorv32/ug/#_comparative_summary) -
on CPU, SoC and system level

• aims to be as small as possible while being as RISC-V-compliant as possible - with a reasonable
area-performance trade-off

• optimized for high clock frequency to ease timing closure

• from zero to "hello world!" - completely open source and documented

• easy to use even for FPGA/RISC-V starters – intended to work out of the box

• NEORV32 CPU: 32-bit rv32i RISC-V CPU

◦ RISC-V compatibility: passes the official architecture tests

◦ base architecture + privileged architecture (optional) + ISA extensions (optional)

◦ option to add custom RISC-V instructions (as custom ISA extension)

The NEORV32 RISC-V Processor Visit on GitHub

11 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/SpinalHDL/VexRiscv
https://github.com/olofk/serv
https://stnolting.github.io/neorv32/ug/#_comparative_summary
https://github.com/stnolting/neorv32

◦ rich set of customization options (ISA extensions, design goal: performance / area (/ energy),
…)

◦ aims to support Full Virtualization capabilities (CPU and SoC) to increase execution safety

◦ official RISC-V open source architecture ID

• NEORV32 Processor (SoC): highly-configurable full-scale microcontroller-like processor system

◦ based on the NEORV32 CPU

◦ optional serial interfaces (UARTs, TWI, SPI)

◦ optional timers and counters (WDT, MTIME)

◦ optional general purpose IO and PWM and native NeoPixel (c) compatible smart LED
interface

◦ optional embedded memories / caches for data, instructions and bootloader

◦ optional external memory interface (Wishbone / AXI4-Lite) and stream link interface (AXI4-
Stream) for custom connectivity

◦ optional execute in place (XIP) module

◦ on-chip debugger compatible with OpenOCD and gdb including hardware trigger module

• Software framework

◦ GCC-based toolchain - prebuilt toolchains available; application compilation based on GNU
makefiles

◦ internal bootloader with serial user interface

◦ core libraries for high-level usage of the provided functions and peripherals

◦ runtime environment and several example programs

◦ doxygen-based documentation of the software framework; a deployed version is available at
https://stnolting.github.io/neorv32/sw/files.html

◦ FreeRTOS port + demos available

For more in-depth details regarding the feature provided by he hardware see the
according sections: NEORV32 Central Processing Unit (CPU) and NEORV32
Processor (SoC).

Extensibility and Customization

The NEORV32 processor was designed to ease customization and extensibility and provides several
options for adding application-specific custom hardware modules and accelerators. The three most
common options for adding custom on-chip modules are listed below.

• Processor-External Memory Interface (WISHBONE) (AXI4-Lite) for processor-external modules

• Custom Functions Subsystem (CFS) for tightly-coupled processor-internal co-processors

• Custom Functions Unit (CFU) for custom RISC-V instructions

The NEORV32 Processor Visit on GitHub

12 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md
https://stnolting.github.io/neorv32/sw/files.html
https://github.com/stnolting/neorv32

A more detailed comparison of the extension/customization options can be found
in section Adding Custom Hardware Modules of the user guide.

The NEORV32 RISC-V Processor Visit on GitHub

13 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_adding_custom_hardware_modules
https://github.com/stnolting/neorv32

1.3. Project Folder Structure

neorv32 - Project home folder
│
├docs - Project documentation
│├datasheet - AsciiDoc sources for the NEORV32 data sheet
│├figures - Figures and logos
│├icons - Misc. symbols
│├references - Data sheets and RISC-V specs.
│└userguide - AsciiDoc sources for the NEORV32 user guide
│
├rtl - VHDL sources
│├core - Core sources of the CPU & SoC
││└mem - SoC-internal memories (default architectures)
│├processor_templates - Pre-configured SoC wrappers
│├system_integration - System wrappers for advanced connectivity
│└test_setups - Minimal test setup "SoCs" used in the User Guide
│
├sim - Simulation files (see User Guide)
│
└sw - Software framework
 ├bootloader - Sources of the processor-internal bootloader
 ├common - Linker script, crt0.S start-up code and central makefile
 ├example - Various example programs
 │└...
 ├lib - Processor core library
 │├include - Header files (*.h)
 │└source - Source files (*.c)
 ├image_gen - Helper program to generate NEORV32 executables^
 ├ocd_firmware - Source code for on-chip debugger's "park loop"
 ├openocd - OpenOCD on-chip debugger configuration files
 └svd - Processor system view description file (CMSIS-SVD)

The NEORV32 Processor Visit on GitHub

14 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

1.4. VHDL File Hierarchy
All necessary VHDL hardware description files are located in the project’s rtl/core folder. The top
entity of the entire processor including all the required configuration generics is neorv32_top.vhd.

All core VHDL files from the list below have to be assigned to a new design library
named neorv32. Additional files, like alternative top entities, can be assigned to any
library.

The NEORV32 RISC-V Processor Visit on GitHub

15 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

neorv32_top.vhd - NEORV32 Processor top entity
│
├neorv32_fifo.vhd - General purpose FIFO component
├neorv32_package.vhd - Processor/CPU main VHDL package file
│
├neorv32_cpu.vhd - NEORV32 CPU top entity
│├neorv32_cpu_alu.vhd - Arithmetic/logic unit
││├neorv32_cpu_cp_bitmanip.vhd - Bit-manipulation co-processor (B ext.)
││├neorv32_cpu_cp_cfu.vhd - Custom functions (instruction) co-processor
(Zxcfu ext.)
││├neorv32_cpu_cp_fpu.vhd - Floating-point co-processor (Zfinx ext.)
││├neorv32_cpu_cp_muldiv.vhd - Mul/Div co-processor (M ext.)
││└neorv32_cpu_cp_shifter.vhd - Bit-shift co-processor (base ISA)
│├neorv32_cpu_bus.vhd - Load/store unit + physical memory protection
│├neorv32_cpu_control.vhd - CPU control, exception system and CSRs
││└neorv32_cpu_decompressor.vhd - Compressed instructions decoder
│└neorv32_cpu_regfile.vhd - Data register file
│
├neorv32_boot_rom.vhd - Bootloader ROM
│└neorv32_bootloader_image.vhd - Bootloader ROM memory image
├neorv32_busswitch.vhd - Processor bus switch for CPU buses (I&D)
├neorv32_bus_keeper.vhd - Processor-internal bus monitor
├neorv32_cfs.vhd - Custom functions subsystem
├neorv32_debug_dm.vhd - on-chip debugger: debug module
├neorv32_debug_dtm.vhd - on-chip debugger: debug transfer module
├neorv32_dmem.entity.vhd - Processor-internal data memory (entity-only!)
├neorv32_gpio.vhd - General purpose input/output port unit
├neorv32_gptmr.vhd - General purpose 32-bit timer
├neorv32_icache.vhd - Processor-internal instruction cache
├neorv32_imem.entity.vhd - Processor-internal instruction memory (entity-
only!)
│└neor32_application_image.vhd - IMEM application initialization image
├neorv32_mtime.vhd - Machine system timer
├neorv32_neoled.vhd - NeoPixel (TM) compatible smart LED interface
├neorv32_pwm.vhd - Pulse-width modulation controller
├neorv32_slink.vhd - Stream link controller
├neorv32_spi.vhd - Serial peripheral interface controller
├neorv32_sysinfo.vhd - System configuration information memory
├neorv32_trng.vhd - True random number generator
├neorv32_twi.vhd - Two wire serial interface controller
├neorv32_uart.vhd - Universal async. receiver/transmitter
├neorv32_wdt.vhd - Watchdog timer
├neorv32_wishbone.vhd - External (Wishbone) bus interface
├neorv32_xip.vhd - Execute in place module
├neorv32_xirq.vhd - External interrupt controller
│
├mem/neorv32_dmem.default.vhd - _Default_ data memory (architecture-only)
└mem/neorv32_imem.default.vhd - _Default_ instruction memory (architecture-only)

The NEORV32 Processor Visit on GitHub

16 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The processor-internal instruction and data memories (IMEM and DMEM) are split
into two design files each: a plain entity definition (neorv32_*mem.entity.vhd) and
the actual architecture definition (mem/neorv32_*mem.default.vhd). The
*.default.vhd architecture definitions from rtl/core/mem provide a generic and
platform independent memory design that (should) infers embedded memory
blocks. You can replace/modify the architecture source file in order to use
platform-specific features (like advanced memory resources) or to improve
technology mapping and/or timing.

The NEORV32 RISC-V Processor Visit on GitHub

17 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

1.5. FPGA Implementation Results
This section shows exemplary FPGA implementation results for the NEORV32 CPU and NEORV32
Processor modules. Note that certain configuration options might also have an impact on other
configuration options. Furthermore, this report cannot cover all possible option combinations.
Hence, the presented implementation results are just exemplary. If not otherwise mentioned all
implementations use the default generic configurations.

1.5.1. CPU

HW version: 1.6.9.8

Top entity: rtl/core/neorv32_cpu.vhd

FPGA: Intel Cyclone IV E EP4CE22F17C6

Toolchain: Quartus Prime Lite 21.1

Constraints: no timing constraints, "balanced optimization", fmax from "Slow 1200mV 0C
Model"

CPU ISA Configuration LEs FFs MEM
bits

DSPs fmax

rv32e 830 400 512 0 129
MHz

rv32i 834 400 1024 0 129
MHz

rv32i_Zicsr 1328 678 1024 0 128
MHz

rv32i_Zicsr_Zicntr 1614 808 1024 0 128
MHz

rv32im_Zicsr_Zicntr 2087 983 1024 0 128
MHz

rv32imc_Zicsr_Zicntr 2338 992 1024 0 128
MHz

rv32imcb_Zicsr_Zicntr 3175 1247 1024 0 128
MHz

rv32imcbu_Zicsr_Zicntr 3186 1254 1024 0 128
MHz

rv32imcbu_Zicsr_Zicntr_Zifencei 3187 1254 1024 0 128
MHz

rv32imcbu_Zicsr_Zicntr_Zifencei_Zfinx 4450 1906 1024 7 123
MHz

The NEORV32 Processor Visit on GitHub

18 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

CPU ISA Configuration LEs FFs MEM
bits

DSPs fmax

rv32imcbu_Zicsr_Zicntr_Zifencei_Zfinx_DebugMode 4825 2018 1024 7 123
MHz

RISC-V Compliance

The Zicsr ISA extension implements the privileged machine architecture (see Zicsr
Control and Status Register Access / Privileged Architecture). The Zicntr ISA
extension implements the basic counters and timers (see Zicntr CPU Base
Counters). Both extensions are mandatory in order to comply with the RISC-V
architecture specifications.

The table above does not show all CPU ISA extensions. More sophisticated and
application-specific options like PMP and HMP are not included in this overview.

Goal-Driven Optimization

The CPU provides further options to reduce the area footprint (for example by
constraining the CPU-internal counter sizes) or to increase performance (for
example by using a barrel-shifter; at cost of extra hardware). See section Processor
Top Entity - Generics for more information. Also, take a look at the User Guide
section Application-Specific Processor Configuration.

1.5.2. Processor - Modules

HW version: 1.6.8.3

Top entity: rtl/core/neorv32_top.vhd

FPGA: Intel Cyclone IV E EP4CE22F17C6

Toolchain: Quartus Prime Lite 21.1

Constraints: no timing constraints, "balanced optimization"

Table 1. Hardware utilization by processor module (mandatory modules highlighted in bold)

Module Description LEs FFs MEM bits DSPs

Boot ROM Bootloader ROM (4kB) 3 2 32768 0

BUSKEEPE
R

Processor-internal bus monitor 28 15 0 0

BUSSWITC
H

Bus multiplexer for CPU instr. and data interface 69 8 0 0

CFS Custom functions subsystem [2] - - - -

DM On-chip debugger - debug module 473 240 0 0

The NEORV32 RISC-V Processor Visit on GitHub

19 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_application_specific_processor_configuration
https://github.com/stnolting/neorv32

Module Description LEs FFs MEM bits DSPs

DTM On-chip debugger - debug transfer module (JTAG) 259 221 0 0

DMEM Processor-internal data memory (8kB) 18 2 65536 0

GPIO General purpose input/output ports 102 98 0 0

GPTMR General Purpose Timer 153 105 0 0

iCACHE Instruction cache (2x4 blocks, 64 bytes per block) 417 297 4096 0

IMEM Processor-internal instruction memory (16kB) 12 2 131072 0

MTIME Machine system timer 345 166 0 0

NEOLED Smart LED Interface (NeoPixel/WS28128)
(FIFO_depth=1)

227 184 0 0

PWM Pulse_width modulation controller (8 channels) 128 qq7 0 0

SLINK Stream link interface (2xRX, 2xTX, FIFO_depth=1) 136 116 0 0

SPI Serial peripheral interface 114 94 0 0

SYSINFO System configuration information memory 13 11 0 0

TRNG True random number generator 89 79 0 0

TWI Two-wire interface 77 43 0 0

UART0,
UART1

Universal asynchronous receiver/transmitter 0/1
(FIFO_depth=1)

195 143 0 0

WDT Watchdog timer 61 46 0 0

WISHBONE External memory interface 120 112 0 0

XIP Execute in place module 318 244 0 0

XIRQ External interrupt controller (32 channels) 245 200 0 0

Note that not all IOs were actually connected to FPGA pins (for example some GPIO
inputs and outputs) when generating these reports.

The NEORV32 Processor Visit on GitHub

20 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

1.5.3. Exemplary Setups

Check out the neorv32-setups repository (@GitHub: https://github.com/stnolting/neorv32-setups),
which provides several demo setups for various FPGA boards and toolchains.

The NEORV32 RISC-V Processor Visit on GitHub

21 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32-setups
https://github.com/stnolting/neorv32

1.6. CPU Performance
The performance of the NEORV32 was tested and evaluated using the Core Mark CPU benchmark.
This benchmark focuses on testing the capabilities of the CPU core itself rather than the
performance of the whole system. The according sources can be found in the sw/example/coremark
folder.

Dhrystone

A simple port of the Dhrystone benchmark is also available in
sw/example/dhrystone.

The resulting CoreMark score is defined as CoreMark iterations per second. The execution time is
determined via the RISC-V [m]cycle[h] CSRs. The relative CoreMark score is defined as CoreMark
score divided by the CPU’s clock frequency in MHz.

Table 2. Configuration

HW version: 1.5.7.10

Hardware: 32kB int. IMEM, 16kB int. DMEM, no caches, 100MHz clock

CoreMark: 2000 iterations, MEM_METHOD is MEM_STACK

Compiler: RISCV32-GCC 10.2.0

Compiler flags: default, see makefile

Table 3. CoreMark results

CPU CoreMark
Score

CoreMarks/
MHz

Average CPI

small (rv32i_Zicsr) 33.89 0.3389 4.04

medium (rv32imc_Zicsr) 62.50 0.6250 5.34

performance (rv32imc_Zicsr + perf. options) 95.23 0.9523 3.54

The CoreMark results were generated using a rv32i toolchain. This toolchain
supports standard extensions like M and C but the built-in libraries only use the
base I ISA.

The "performance" CPU configuration uses the FAST_MUL_EN and FAST_SHIFT_EN
options.

The NEORV32 CPU is based on a multi-cycle architecture. Each instruction is executed in a sequence
of several consecutive micro operations. The average CPI (cycles per instruction) depends on the
instruction mix of a specific applications and also on the available CPU extensions. The average CPI
is computed by dividing the total number of required clock cycles (only the timed core to avoid
distortion due to IO wait cycles) by the number of executed instructions ([m]instret[h] CSRs). More
information regarding the execution time of each implemented instruction can be found in chapter

The NEORV32 Processor Visit on GitHub

22 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://www.eembc.org/coremark/
https://github.com/stnolting/neorv32

Instruction Timing.

[1] Pronounced "neo-R-V-thirty-two" or "neo-risc-five-thirty-two" in its long form.

[2] Resource utilization depends on custom design logic.

The NEORV32 RISC-V Processor Visit on GitHub

23 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Chapter 2. NEORV32 Processor (SoC)
The NEORV32 Processor is based on the NEORV32 CPU. Together with common peripheral
interfaces and embedded memories it provides a RISC-V-based full-scale microcontroller-like SoC
platform.

Key Features

• optional processor-internal data and instruction memories (DMEM/IMEM) + cache (iCACHE)

• optional internal bootloader (BOOTROM) with UART console & SPI flash boot option

• optional machine system timer (MTIME), RISC-V-compatible

• optional two independent universal asynchronous receivers and transmitters (UART0, UART1)
with optional hardware flow control (RTS/CTS) and optional RX/TX FIFOs

• optional 8/16/24/32-bit serial peripheral interface controller (SPI) with 8 dedicated CS lines

• optional two wire serial interface controller (TWI), compatible to the I²C standard

• optional general purpose parallel IO port (GPIO), 64xOut, 64xIn

• optional 32-bit external bus interface, Wishbone b4 / AXI4-Lite compatible (WISHBONE)

• optional 32-bit stream link interface with up to 8 independent links, AXI4-Stream compatible
(SLINK)

• optional watchdog timer (WDT)

• optional PWM controller with up to 60 channels & 8-bit duty cycle resolution (PWM)

• optional ring-oscillator-based true random number generator (TRNG)

• optional custom functions subsystem for custom co-processor extensions (CFS)

The NEORV32 Processor Visit on GitHub

24 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

• optional NeoPixel™/WS2812-compatible smart LED interface (NEOLED)

• optional external interrupt controller with up to 32 channels (XIRQ)

• optional general purpose 32-bit timer (GPTMR)

• optional execute in place module (XIP)

• optional on-chip debugger with JTAG TAP (OCD)

• bus keeper to monitor processor-internal bus transactions (BUSKEEPER)

• system configuration information memory to check HW configuration via software (SYSINFO)

The NEORV32 RISC-V Processor Visit on GitHub

25 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.1. Processor Top Entity - Signals
The following table shows signals of the processor top entity (rtl/core/neorv32_top.vhd). The type of
all signals is std_ulogic or std_ulogic_vector, respectively.

Default Values of Ports

All input signals provide default values in case they are not explicitly assigned
during instantiation. For control signals the value L (weak pull-down) is used. For
serial and parallel data signals the value U (unknown) is used. Pulled-down signals
will not cause "accidental" system crashes since all control signals have defined
level.

Configurable Amount of Channels

Some peripherals allow to configure the number of channels to-be-implemented
by a generic (for example the number of PWM or SLINK channels). The according
input/output signals have a fixed sized regardless of the actually configured
amount of channels. If less than the maximum number of channels is configured,
only the LSB-aligned channels are used: in case of an input port the remaining
bits/channels are left unconnected; in case of an output port the remaining
bits/channels are hardwired to zero.

Signal Width Dir. Function

Global Control

clk_i 1 in global clock line, all registers triggering on rising edge

rstn_i 1 in global reset, asynchronous, low-active

JTAG Access Port for On-Chip Debugger (OCD)

jtag_trst_i 1 in TAP reset, low-active (optional [3])

jtag_tck_i 1 in serial clock

jtag_tdi_i 1 in serial data input

jtag_tdo_o 1 out serial data output [4]

jtag_tms_i 1 in mode select

External Bus Interface (WISHBONE)

wb_tag_o 3 out tag (access type identifier)

wb_adr_o 32 out destination address

wb_dat_i 32 in write data

wb_dat_o 32 out read data

wb_we_o 1 out write enable ('0' = read transfer)

wb_sel_o 4 out byte enable

The NEORV32 Processor Visit on GitHub

26 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Signal Width Dir. Function

wb_stb_o 1 out strobe

wb_cyc_o 1 out valid cycle

wb_lock_o 1 out exclusive access request

wb_ack_i 1 in transfer acknowledge

wb_err_i 1 in transfer error

Advanced Memory Control Signals

fence_o 1 out indicates an executed fence instruction

fencei_o 1 out indicates an executed fencei instruction

Execute In Place Interface (XIP)

xip_csn_o 1 out chi select, low-active

xip_clk_o 1 out serial clock

xip_sdi_i 1 in serial data input

xip_sdo_o 1 out serial data output

Stream Link Interface (SLINK)

slink_tx_dat_o 8x32 out TX link n data

slink_tx_val_o 8 out TX link n data valid

slink_tx_rdy_i 8 in TX link n allowed to send

slink_rx_dat_i 8x32 in RX link n data

slink_rx_val_i 8 in RX link n data valid

slink_rx_rdy_o 8 out RX link n ready to receive

General Purpose Inputs & Outputs (GPIO)

gpio_o 64 out general purpose parallel output

gpio_i 64 in general purpose parallel input

Primary Universal Asynchronous Receiver/Transmitter (UART0)

uart0_txd_o 1 out UART0 serial transmitter

uart0_rxd_i 1 in UART0 serial receiver

uart0_rts_o 1 out UART0 RX ready to receive new char

uart0_cts_i 1 in UART0 TX allowed to start sending

Primary Universal Asynchronous Receiver/Transmitter (UART1)

uart1_txd_o 1 out UART1 serial transmitter

uart1_rxd_i 1 in UART1 serial receiver

uart1_rts_o 1 out UART1 RX ready to receive new char

The NEORV32 RISC-V Processor Visit on GitHub

27 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Signal Width Dir. Function

uart1_cts_i 1 in UART1 TX allowed to start sending

Serial Peripheral Interface Controller (SPI)

spi_sck_o 1 out SPI controller clock line

spi_sdo_o 1 out SPI serial data output

spi_sdi_i 1 in SPI serial data input

spi_csn_o 8 out SPI dedicated chip select (low-active)

Two-Wire Interface Controller (TWI)

twi_sda_io 1 inout TWI serial data line

twi_scl_io 1 inout TWI serial clock line

Pulse-Width Modulation Channels (PWM)

pwm_o 60 out pulse-width modulated channels

Custom Functions Subsystem (CFS)

cfs_in_i 32 in custom CFS input signal conduit

cfs_out_o 32 out custom CFS output signal conduit

Smart LED Interface - NeoPixel™ compatible (NEOLED)

neoled_o 1 out asynchronous serial data output

System time (MTIME)

mtime_i 64 in machine timer time (to time[h] CSRs) from external MTIME
unit if the processor-internal MTIME unit is NOT
implemented

mtime_o 64 out machine timer time from internal MTIME unit if processor-
internal MTIME unit IS implemented

External Interrupts (XIRQ)

xirq_i 32 in external interrupt requests (up to 32 channels)

RISC-V Machine-Level CPU Interrupts

mtime_irq_i 1 in machine timer interrupt13 (RISC-V), high-active

msw_irq_i 1 in machine software interrupt (RISC-V), high-active

mext_irq_i 1 in machine external interrupt (RISC-V), high-active

The NEORV32 Processor Visit on GitHub

28 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.2. Processor Top Entity - Generics
This is a list of all configuration generics of the NEORV32 processor top entity rtl/neorv32_top.vhd.
The generic name is shown in orange, followed by the type in printed in black and concluded by the
default value printed in light gray.

The NEORV32 generics allow to configure the system according to your needs. The
generics are used to control implementation of certain CPU extensions and
peripheral modules and even allow to optimize the system for certain design goals
like minimal area or maximum performance.

More information can be found in the user guides' section Application-Specific
Processor Configuration.

Privileged software can determine the actual CPU and processor configuration via
the misa and mxisa CSRs (CPU) and the SYSINFO (processor) memory-mapped
registers.

Run a quick simulation using the provided simulation/GHDL scripts
(https://stnolting.github.io/neorv32/ug/#_hello_world) to verify the configuration of
the processor generics is valid.

If optional modules (like CPU extensions or peripheral devices) are not enabled
the according circuitry will not be synthesized at all. Hence, the disabled
modules do not increase area and power requirements and do not impact the
timing.

Not all configuration combinations are valid. The processor RTL code provides
sanity checks to inform the user during synthesis/simulation if an invalid
combination has been detected.

Generic Description

The description of each generic provides the following summary:

Table 4. Generic description

Generic name type default value

Description

The NEORV32 RISC-V Processor Visit on GitHub

29 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_application_specific_processor_configuration
https://stnolting.github.io/neorv32/ug/#_application_specific_processor_configuration
https://stnolting.github.io/neorv32/ug/#_hello_world
https://github.com/stnolting/neorv32

2.2.1. General

See section System Configuration Information Memory (SYSINFO) for more information.

CLOCK_FREQUENCY

CLOCK_FREQUENCY natural none

The clock frequency of the processor’s clk_i input port in Hertz (Hz). This value can be retrieved
by software from the SYSINFO module.

INT_BOOTLOADER_EN

INT_BOOTLOADER_EN boolean false

Implement the processor-internal boot ROM, pre-initialized with the default bootloader image
when true. This will also change the processor’s boot address from the beginning of the instruction
memory address space (default = 0x00000000) to the base address of the boot ROM. See section
Boot Configuration for more information.

HW_THREAD_ID

HW_THREAD_ID natural 0

The hart ID of the CPU. Software can retrieve this value from the mhartid CSR. Note that hart IDs
must be unique within a system.

ON_CHIP_DEBUGGER_EN

ON_CHIP_DEBUGGER_EN boolean false

Implement the on-chip debugger (OCD) and the CPU debug mode. See chapter On-Chip Debugger
(OCD) for more information.

2.2.2. RISC-V CPU Extensions

Discovering ISA Extensions

See section Instruction Sets and Extensions for more information. The
configuration of the RISC-V main ISA extensions (like M) can be determined via the
misa CSR. The configuration of ISA sub-extensions (like Zicsr) and tuning options
can be determined via the NEORV32-specific mxisa CSR.

CPU_EXTENSION_RISCV_B

CPU_EXTENSION_RISCV_B boolean false

Implement the B bit-manipulation sub-extension when true. See section B - Bit-Manipulation
Operations for more information.

The NEORV32 Processor Visit on GitHub

30 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

CPU_EXTENSION_RISCV_C

CPU_EXTENSION_RISCV_C boolean false

Implement compressed instructions (16-bit) when true. Compressed instructions can reduce
program code size by approx. 30%. See section C - Compressed Instructions.

CPU_EXTENSION_RISCV_E

CPU_EXTENSION_RISCV_E boolean false

Implement the embedded CPU extension (only implement the first 16 data registers) when true.
This reduces embedded memory requirements for the register file. See section E - Embedded CPU
for more information. Note that this RISC-V extensions requires a different application binary
interface (ABI).

CPU_EXTENSION_RISCV_M

CPU_EXTENSION_RISCV_M boolean false

Implement hardware accelerators for integer multiplication and division instructions when true.
If this extensions is not enabled, multiplication and division operations (not instructions) will be
computed entirely in software. If only a hardware multiplier is required use the
CPU_EXTENSION_RISCV_Zmmul extension. Multiplication can also be mapped to DSP slices via the
FAST_MUL_EN generic. See section M - Integer Multiplication and Division for more information.

CPU_EXTENSION_RISCV_U

CPU_EXTENSION_RISCV_U boolean false

Implement less-privileged user mode when true. See section U - Less-Privileged User Mode for
more information.

CPU_EXTENSION_RISCV_Zfinx

CPU_EXTENSION_RISCV_Zfinx boolean false

Implement the 32-bit single-precision floating-point extension (using integer registers) when true.
See section Zfinx Single-Precision Floating-Point Operations for more information.

CPU_EXTENSION_RISCV_Zicsr

CPU_EXTENSION_RISCV_Zicsr boolean true

Implement the control and status register (CSR) access instructions when true. Note: When this
option is disabled, the complete privileged architecture / trap system will be excluded from
synthesis. Hence, no interrupts, no exceptions and no machine information will be available. See
section Zicsr Control and Status Register Access / Privileged Architecture for more information.

The NEORV32 RISC-V Processor Visit on GitHub

31 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

CPU_EXTENSION_RISCV_Zicntr

CPU_EXTENSION_RISCV_Zicntr boolean true

Implement the basic CPU (Machine) Counter and Timer CSRs (time[h], [m]cycle[h], [m]instret[h])
when true. See section Zicntr CPU Base Counters for more information.

CPU_EXTENSION_RISCV_Zihpm

CPU_EXTENSION_RISCV_Zihpm boolean false

Implement hardware performance monitor CSRs when true. See section Zihpm Hardware
Performance Monitors for more information.

CPU_EXTENSION_RISCV_Zifencei

CPU_EXTENSION_RISCV_Zifencei boolean false

Implement the instruction fetch synchronization instruction fence.i. For example, this option is
required for self-modifying code (and/or for instruction cache and CPU prefetch buffer flushes).
See section Zifencei Instruction Stream Synchronization for more information.

CPU_EXTENSION_RISCV_Zmmul

CPU_EXTENSION_RISCV_Zmmul boolean false

Implement integer multiplication-only instructions when true. This is a sub-extension of the M
extension, which cannot be used together with the M extension. See section Zmmul - Integer
Multiplication for more information.

CPU_EXTENSION_RISCV_Zxcfu

CPU_EXTENSION_RISCV_Zxcfu boolean false

NEORV32-specific "custom RISC-V" ISA extensions: Implement the Custom Functions Unit (CFU) for
user-defined custom instruction when true. See section Zxcfu Custom Instructions Extension (CFU)
for more information.

2.2.3. Tuning Options

These are generics to fine-tune certain ISA extensions and CPU features. See section Instruction Sets
and Extensions for more information.

FAST_MUL_EN

FAST_MUL_EN boolean false

The NEORV32 Processor Visit on GitHub

32 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

When this generic is enabled, the multiplier of the M extension is implemented using DSPs blocks
instead of an iterative bit-serial approach. Performance will be increased and LUT utilization will
be reduced at the cost of DSP slice utilization. This generic is only relevant when a hardware
multiplier CPU extension is enabled (CPU_EXTENSION_RISCV_M or
CPU_EXTENSION_RISCV_Zmmul is true). Note that the multipliers of the Zfinx Single-Precision
Floating-Point Operations extension are always mapped to DSP block (if available).

FAST_SHIFT_EN

FAST_SHIFT_EN boolean false

If this generic is set true the shifter unit of the CPU’s ALU is implemented as fast barrel shifter
(requiring more hardware resources but completing within two clock cycles). If it is set false, the
CPU uses a serial shifter that only performs a single bit shift per cycle (requiring less hardware
resources, but requires up to 32 clock cycles to complete - depending on shift amount). Note that
this option also implements barrel shifters for all shift-related operations of the B - Bit-
Manipulation Operations extension.

CPU_CNT_WIDTH

CPU_CNT_WIDTH natural 64

This generic configures the total size of the CPU’s [m]cycle and [m]instret CSRs (low word + high
word). The maximum value is 64, the minimum value is 0. See section (Machine) Counter and
Timer CSRs for more information. This generic is only relevant if the Zicntr ISa extension is
enabled (CPU_EXTENSION_RISCV_Zicntr). Note: configurations with CPU_CNT_WIDTH less than 64
bits do not comply to the RISC-V specs.

CPU_IPB_ENTRIES

CPU_IPB_ENTRIES natural 2

This generic configures the number of entries in the CPU’s instruction prefetch buffer (a FIFO). The
value has to be a power of two and has to be greater than or equal to two (>= 2). Long linear
sequences of code can benefit from an increased IPB size.

2.2.4. Physical Memory Protection (PMP)

See section PMP Physical Memory Protection for more information.

PMP_NUM_REGIONS

PMP_NUM_REGIONS natural 0

Total number of implemented protection regions (0..16). If this generics is zero no physical
memory protection logic will be implemented at all.

The NEORV32 RISC-V Processor Visit on GitHub

33 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

PMP_MIN_GRANULARITY

PMP_MIN_GRANULARITY natural 4

Minimal region granularity in bytes. Has to be a power of two and has to be at least 4 bytes. A
larger granularity will reduce hardware utilization and impact on critical path but will also reduce
the minimal region size.

2.2.5. Hardware Performance Monitors (HPM)

These generics allow to customize the Zihpm ISA extension. Note that the following generics are
ignored if the CPU_EXTENSION_RISCV_Zihpm generic is false. See section Zihpm Hardware
Performance Monitors for more information.

HPM_NUM_CNTS

HPM_NUM_CNTS natural 0

Total number of implemented hardware performance monitor counters (0..29). If this generics is
zero, no hardware performance monitor logic will be implemented at all.

HPM_CNT_WIDTH

HPM_CNT_WIDTH natural 40

This generic defines the total LSB-aligned size of each HPM counter (size([m]hpmcounter*h)
size([m]hpmcounter*)). The maximum value is 64, the minimal is 0. If the size is less than 64-bit, the
unused MSB-aligned counter bits are hardwired to zero.

2.2.6. Internal Instruction Memory

See sections Address Space and Instruction Memory (IMEM) for more information.

MEM_INT_IMEM_EN

MEM_INT_IMEM_EN boolean false

Implement processor internal instruction memory (IMEM) when true.

MEM_INT_IMEM_SIZE

MEM_INT_IMEM_SIZE natural 16*1024

Size in bytes of the processor internal instruction memory (IMEM). Has no effect when
MEM_INT_IMEM_EN is false.

2.2.7. Internal Data Memory

See sections Address Space and Data Memory (DMEM) for more information.

The NEORV32 Processor Visit on GitHub

34 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

MEM_INT_DMEM_EN

MEM_INT_DMEM_EN boolean false

Implement processor internal data memory (DMEM) when true.

MEM_INT_DMEM_SIZE

MEM_INT_DMEM_SIZE natural 8*1024

Size in bytes of the processor-internal data memory (DMEM). Has no effect when
MEM_INT_DMEM_EN is false.

2.2.8. Internal Cache Memory

See section Processor-Internal Instruction Cache (iCACHE) for more information.

ICACHE_EN

ICACHE_EN boolean false

Implement processor internal instruction cache when true. Note: if the setup only uses processor-
internal data and instruction memories there is not point of implementing the i-cache.

ICACHE_NUM_BLOCKS

ICACHE_NUM_BLOCKS natural 4

Number of blocks (cache "pages" or "lines") in the instruction cache. Has to be a power of two. Has
no effect when ICACHE_EN is false.

ICACHE_BLOCK_SIZE

ICACHE_BLOCK_SIZE natural 64

Size in bytes of each block in the instruction cache. Has to be a power of two. Has no effect when
ICACHE_EN is false.

ICACHE_ASSOCIATIVITY

ICACHE_ASSOCIATIVITY natural 1

Associativity (= number of sets) of the instruction cache. Has to be a power of two. Allowed
configurations: 1 = 1 set, direct mapped; 2 = 2-way set-associative. Has no effect when ICACHE_EN
is false.

2.2.9. External Memory Interface

See sections Address Space and Processor-External Memory Interface (WISHBONE) (AXI4-Lite) for
more information.

The NEORV32 RISC-V Processor Visit on GitHub

35 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

MEM_EXT_EN

MEM_EXT_EN boolean false

Implement external bus interface (WISHBONE) when true.

MEM_EXT_TIMEOUT

MEM_EXT_TIMEOUT natural 255

Clock cycles after which a pending external bus access will auto-terminate and raise a bus fault
exception. If set to zero, there will be no auto-timeout and no bus fault exception (might
permanently stall system!).

MEM_EXT_PIPE_MODE

MEM_EXT_PIPE_MODE boolean false

Use standard ("classic") Wishbone protocol for external bus when false. Use pipelined Wishbone
protocol when true.

MEM_EXT_BIG_ENDIAN

MEM_EXT_BIG_ENDIAN boolean false

Use BIG endian interface for external bus when true. Use little endian interface when false.

MEM_EXT_ASYNC_RX

MEM_EXT_ASYNC_RX boolen false

By default, MEM_EXT_ASYNC_RX = false implements a registered read-back path (RX) for incoming
data in the bus interface in order to shorten the critical path. By setting MEM_EXT_ASYNC_RX =
true an asynchronous ("direct") read-back path is implemented reducing access latency by one
cycle but eventually increasing the critical path.

2.2.10. Stream Link Interface

See section Stream Link Interface (SLINK) for more information.

SLINK_NUM_TX

SLINK_NUM_TX natural 0

Number of TX (send) links to implement. Valid values are 0..8.

SLINK_NUM_RX

SLINK_NUM_RX natural 0

The NEORV32 Processor Visit on GitHub

36 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Number of RX (receive) links to implement. Valid values are 0..8.

SLINK_TX_FIFO

SLINK_TX_FIFO natural 1

Internal FIFO depth for all implemented TX links. Valid values are 1..32k and have to be a power of
two.

SLINK_RX_FIFO

SLINK_RX_FIFO natural 1

Internal FIFO depth for all implemented RX links. Valid values are 1..32k and have to be a power of
two.

2.2.11. External Interrupt Controller

See section External Interrupt Controller (XIRQ) for more information.

XIRQ_NUM_CH

XIRQ_NUM_CH natural 0

Number of external interrupt channels o implement. Valid values are 0..32.

XIRQ_TRIGGER_TYPE

XIRQ_TRIGGER_TYPE std_ulogic_vector(31 downto 0) 0xFFFFFFFF

Interrupt trigger type configuration (one bit for each IRQ channel): 0 = level-triggered, '1' = edge
triggered. XIRQ_TRIGGER_POLARITY generic is used to specify the actual level (high/low) or edge
(falling/rising).

XIRQ_TRIGGER_POLARITY

XIRQ_TRIGGER_POLARITY std_ulogic_vector(31 downto 0) 0xFFFFFFFF

Interrupt trigger polarity configuration (one bit for each IRQ channel): 0 = low-level/falling-edge, '1'
= high-level/rising-edge. XIRQ_TRIGGER_TYPE generic is used to specify the actual type (level or
edge).

2.2.12. Processor Peripheral/IO Modules

See section Processor-Internal Modules for more information.

IO_GPIO_EN

IO_GPIO_EN boolean false

The NEORV32 RISC-V Processor Visit on GitHub

37 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Implement general purpose input/output port unit (GPIO) when true. See section General Purpose
Input and Output Port (GPIO) for more information.

IO_MTIME_EN

IO_MTIME_EN boolean false

Implement machine system timer (MTIME) when true. See section Machine System Timer (MTIME)
for more information.

IO_UART0_EN

IO_UART0_EN boolean false

Implement primary universal asynchronous receiver/transmitter (UART0) when true. See section
Primary Universal Asynchronous Receiver and Transmitter (UART0) for more information.

IO_UART0_RX_FIFO

IO_UART0_RX_FIFO natural 1

UART0 receiver FIFO depth, has to be a power of two, minimum value is 1 (implementing simple
double-buffering). See section Primary Universal Asynchronous Receiver and Transmitter (UART0)
for more information.

IO_UART0_TX_FIFO

IO_UART0_TX_FIFO natural 1

UART0 transmitter FIFO depth, has to be a power of two, minimum value is 1 (implementing
simple double-buffering). See section Primary Universal Asynchronous Receiver and Transmitter
(UART0) for more information.

IO_UART1_EN

IO_UART1_EN boolean false

Implement secondary universal asynchronous receiver/transmitter (UART1) when true. See
section Secondary Universal Asynchronous Receiver and Transmitter (UART1) for more
information.

IO_UART1_RX_FIFO

IO_UART1_RX_FIFO natural 1

UART1 receiver FIFO depth, has to be a power of two, minimum value is 1 (implementing simple
double-buffering). See section Primary Universal Asynchronous Receiver and Transmitter (UART0)
for more information.

The NEORV32 Processor Visit on GitHub

38 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

IO_UART1_TX_FIFO

IO_UART1_TX_FIFO natural 1

UART1 transmitter FIFO depth, has to be a power of two, minimum value is 1 (implementing
simple double-buffering). See section Primary Universal Asynchronous Receiver and Transmitter
(UART0) for more information.

IO_SPI_EN

IO_SPI_EN boolean false

Implement serial peripheral interface controller (SPI) when true. See section Serial Peripheral
Interface Controller (SPI) for more information.

IO_TWI_EN

IO_TWI_EN boolean false

Implement two-wire interface controller (TWI) when true. See section Two-Wire Serial Interface
Controller (TWI) for more information.

IO_PWM_NUM_CH

IO_PWM_NUM_CH natural 0

Number of pulse-width modulation (PWM) channels (0..60) to implement. The PWM controller is
not implemented if zero. See section Pulse-Width Modulation Controller (PWM) for more
information.

IO_WDT_EN

IO_WDT_EN boolean false

Implement watchdog timer (WDT) when true. See section Watchdog Timer (WDT) for more
information.

IO_TRNG_EN

IO_TRNG_EN boolean false

Implement true-random number generator (TRNG) when true. See section True Random-Number
Generator (TRNG) for more information.

IO_TRNG_FIFO

IO_TRNG_FIFO natural 1

Defines the depth of the TRNG data FIFO. Minimal value is 1;, has to be a power of two. See section
True Random-Number Generator (TRNG) for more information.

The NEORV32 RISC-V Processor Visit on GitHub

39 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

IO_CFS_EN

IO_CFS_EN boolean false

Implement custom functions subsystem (CFS) when true. See section Custom Functions Subsystem
(CFS) for more information.

IO_CFS_CONFIG

IO_CFS_CONFIG std_ulogic_vector(31 downto 0) 0x"00000000"

This is a "conduit" generic that can be used to pass user-defined CFS implementation flags to the
custom functions subsystem entity. See section Custom Functions Subsystem (CFS) for more
information.

IO_CFS_IN_SIZE

IO_CFS_IN_SIZE positive 32

Defines the size of the CFS input signal conduit (cfs_in_i). See section Custom Functions
Subsystem (CFS) for more information.

IO_CFS_OUT_SIZE

IO_CFS_OUT_SIZE positive 32

Defines the size of the CFS output signal conduit (cfs_out_o). See section Custom Functions
Subsystem (CFS) for more information.

IO_NEOLED_EN

IO_NEOLED_EN boolean false

Implement smart LED interface (WS2812 / NeoPixel™-compatible) (NEOLED) when true. See
section Smart LED Interface (NEOLED) for more information.

IO_NEOLED_TX_FIFO

IO_NEOLED_TX_FIFO natural 1

TX FIFO depth of the the NEOLED module. Minimal value is 1, maximal value is 32k, has to be a
power of two. See section Smart LED Interface (NEOLED) for more information.

IO_GPTMR_EN

IO_GPTMR_EN boolean false

Implement general purpose 32-bit timer (GPTMR) when true. See section General Purpose Timer
(GPTMR) for more information.

The NEORV32 Processor Visit on GitHub

40 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

IO_XIP_EN

IO_XIP_EN boolean false

Implement the execute in place module (XIP) when true. See section Execute In Place Module (XIP)
for more information.

The NEORV32 RISC-V Processor Visit on GitHub

41 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.3. Processor Interrupts
The NEORV32 Processor provides several interrupt request signals (IRQs) for custom platform use.

2.3.1. RISC-V Standard Interrupts

The processor setup features the standard machine-level RISC-V interrupt lines for "machine timer
interrupt", "machine software interrupt" and "machine external interrupt". Their usage is defined
by the RISC-V privileged architecture specifications. However, bare-metal system can also
repurpose these interrupts. See CPU section Traps, Exceptions and Interrupts for more information.

Top signal Width Description

mtime_irq_i 1 Machine timer interrupt from processor-external MTIME unit (
MTI). This IRQ is only available if the processor-internal MTIME
unit is not used (IO_MTIME_EN = false).

msw_irq_i 1 Machine software interrupt (MSI). This interrupt is used for inter-
processor interrupts in multi-core systems. However, it can also be
used for any custom purpose.

mext_irq_i 1 Machine external interrupt (MEI). This interrupt is used for any
processor-external interrupt source (like a platform interrupt
controller).

Trigger type

The fast interrupt request channels become pending after being triggering by a
rising edge. A pending FIRQ has to be explicitly cleared by writing zero to the
according mip CSR bit.

2.3.2. Platform External Interrupts

Top signal Width Description

xirq_i up to 32 External platform interrupts (user-defined).

The processor provides an optional interrupt controller for up to 32 user-defined external
interrupts (see section External Interrupt Controller (XIRQ)). These external IRQs are mapped to a
single CPU fast interrupt request so a software handler is required to differentiate / prioritize these
interrupts.

Trigger type

The trigger for these interrupt can be defined via generics. See section External
Interrupt Controller (XIRQ) for more information. Depending on the trigger type,
users can implement custom acknowledge mechanisms. All external interrupts are
mapped to a single processor-internal fast interrupt request (see below).

The NEORV32 Processor Visit on GitHub

42 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.3.3. NEORV32-Specific Fast Interrupt Requests

As part of the custom/NEORV32-specific CPU extensions, the CPU features 16 fast interrupt request
signals (FIRQ0 - FIRQ15). These are reserved for processor-internal modules only (for example for the
communication interfaces to signal "available incoming data" or "ready to send new data").

The mapping of the 16 FIRQ channels is shown in the following table (the channel number also
corresponds to the according FIRQ priority; 0 = highest, 15 = lowest):

Table 5. NEORV32 fast interrupt channel mapping

Channel Source Description

0 WDT watchdog timeout interrupt

1 CFS custom functions subsystem (CFS) interrupt (user-defined)

2 UART0 UART0 data received interrupt (RX complete)

3 UART0 UART0 sending done interrupt (TX complete)

4 UART1 UART1 data received interrupt (RX complete)

5 UART1 UART1 sending done interrupt (TX complete)

6 SPI SPI transmission done interrupt

7 TWI TWI transmission done interrupt

8 XIRQ External interrupt controller interrupt

9 NEOLED NEOLED TX buffer interrupt

10 SLINK RX data buffer interrupt

11 SLINK TX data buffer interrupt

12 GPTMR General purpose timer interrupt

13:15 - reserved, will never fire

Trigger type

The fast interrupt request channels become pending after being triggering by a
rising edge. A pending FIRQ has to be explicitly cleared by writing zero to the
according mip CSR bit.

The NEORV32 RISC-V Processor Visit on GitHub

43 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.4. Address Space
The NEORV32 Processor provides a 32-bit / 4GB (physical) address space By default, this address
space is divided into five main regions:

1. Instruction address space - memory address space for instructions (=code) and constants. A
configurable section of this address space is used by the internal/external instruction memory
(MEM_INT_IMEM_SIZE for the internal IMEM).

2. Data address space - memory address space for application runtime data (heap, stack, etc.). A
configurable section of this address space is used by the internal/external data memory
(MEM_INT_DMEM_SIZE for the internal DMEM).

3. Bootloader address space. A fixed section of this address space is used by the internal
bootloader memory (BOOTLDROM).

4. On-Chip Debugger address space. This fixed section is entirely used by the processor’s On-Chip
Debugger (OCD).

5. IO/peripheral address space. Also a fixed section used for the processor-internal memory-
mapped IO/peripheral devices (e.g., UART).

Figure 1. NEORV32 processor - address space (default configuration)

RAM Layout - Usage of the Data Address Space

The actual usage of the data address space by the software/executables (stack,
heap, …) is illustrated in section RAM Layout.

2.4.1. CPU Data and Instruction Access

The CPU can access all of the 4GB address space from the instruction fetch interface (I) and also
from the data access interface (D). These two CPU interfaces are multiplexed by a simple bus switch
(rtl/core/neorv32_busswitch.vhd) into a single processor-internal bus. All processor-internal

The NEORV32 Processor Visit on GitHub

44 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

memories, peripherals and also the external memory interface are connected to this bus. Hence,
both CPU interfaces (instruction fetch & data access) have access to the same (identical) address
space making the setup a modified von-Neumann architecture.

Figure 2. Processor-internal bus architecture

The internal processor bus might appear as bottleneck. In order to reduce traffic
jam on this bus (when instruction fetch and data interface access the bus at the
same time) the instruction fetch of the CPU is equipped with a prefetch buffer.
Instruction fetches can be further buffered using the i-cache. Furthermore, data
accesses (loads and stores) have higher priority than instruction fetch accesses.

Please note that all processor-internal components including the peripheral/IO
devices can also be accessed from programs running in less-privileged user mode.
For example, if the system relies on a periodic interrupt from the MTIME timer
unit, user-level programs could alter the MTIME configuration corrupting this
interrupt. This kind of security issues can be compensated using the PMP system
(see Machine Physical Memory Protection CSRs).

2.4.2. Address Space Layout

The general address space layout consists of two main configuration constants: ispace_base_c
defining the base address of the instruction memory address space and dspace_base_c defining the
base address of the data memory address space. Both constants are defined in the NEORV32 VHDL
package file rtl/core/neorv32_package.vhd:

The NEORV32 RISC-V Processor Visit on GitHub

45 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

-- Architecture Configuration --
-- --
constant ispace_base_c : std_ulogic_vector(31 downto 0) := x"00000000";
constant dspace_base_c : std_ulogic_vector(31 downto 0) := x"80000000";

The default configuration assumes the instruction memory address space starting at address
0x00000000 and the data memory address space starting at 0x80000000. Both values can be
modified for a specific setup and the address space may overlap or can be completely identical.
Make sure that both base addresses are aligned to a 4-byte boundary.

The base address of the internal bootloader (at 0xFFFF0000) and the internal IO
region (at 0xFFFFFE00) for peripheral devices are also defined in the package and
are fixed. These address regions cannot not be used for other applications - even if
the bootloader or all IO devices are not implemented - without modifying the
core’s hardware sources.

2.4.3. Memory Configuration

The NEORV32 Processor was designed to provide maximum flexibility for the memory
configuration. The processor can populate the instruction address space and/or the data address
space with internal memories for instructions (IMEM) and data (DMEM). Processor external
memories can be used as an alternative or even in combination with the internal ones. The figure
below show some exemplary memory configurations.

Figure 3. Exemplary memory configurations

The NEORV32 Processor Visit on GitHub

46 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Internal Memories

The processor-internal memories (Instruction Memory (IMEM) and Data Memory (DMEM)) are
enabled (=implemented) via the MEM_INT_IMEM_EN and MEM_INT_DMEM_EN generics. Their
sizes are configures via the according MEM_INT_IMEM_SIZE and MEM_INT_DMEM_SIZE generics.

If the processor-internal IMEM is implemented, it is located right at the base address of the
instruction address space (default ispace_base_c = 0x00000000). Vice versa, the processor-internal
data memory is located right at the beginning of the data address space (default dspace_base_c =
0x80000000) when implemented.

The default processor setup uses only internal memories.

If the IMEM (internal or external) is less than the (default) maximum size (2GB),
there is a "dead address space" between it and the DMEM. This provides an
additional safety feature since data corrupting scenarios like stack overflow
cannot directly corrupt the content of the IMEM: any access to the "dead address
space" in between will raise an exception that can be caught by the runtime
environment.

External Memories

If external memories (or further IP modules) shall be connected via the processor’s external bus
interface, the interface has to be enabled via MEM_EXT_EN generic (=true). More information
regarding this interface can be found in section Processor-External Memory Interface (WISHBONE)
(AXI4-Lite).

Any CPU access (data or instructions), which does not fulfill at least one of the following conditions,
is forwarded via the processor’s bus interface to external components:

• access to the processor-internal IMEM and processor-internal IMEM is implemented

• access to the processor-internal DMEM and processor-internal DMEM is implemented

• access to the bootloader ROM and beyond → addresses >= BOOTROM_BASE (default
0xFFFF0000) will never be forwarded to the external memory interface

If the Execute In Place module (XIP) is implemented accesses map to this module
are not forwarded to the external memory interface. See section Execute In Place
Module (XIP) for more information.

If no (or not all) processor-internal memories are implemented, the according base addresses are
mapped to external memories. For example, if the processor-internal IMEM is not implemented
(MEM_INT_IMEM_EN = false), the processor will forward any access to the instruction address
space (starting at ispace_base_c) via the external bus interface to the external memory system.

The NEORV32 RISC-V Processor Visit on GitHub

47 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

If the external interface is deactivated, any access exceeding the internal memory
address space (instruction, data, bootloader) or the internal peripheral address
space will trigger a bus access fault exception.

2.4.4. Boot Configuration

Due to the flexible memory configuration concept, the NEORV32 Processor provides several
different boot concepts. The figure below shows the exemplary concepts for the two most common
boot scenarios.

Figure 4. NEORV32 boot configurations

The configuration of internal or external data memory (DMEM;
MEM_INT_DMEM_EN = true / false) is not further relevant for the boot
configuration itself. Hence, it is not further illustrated here.

There are two general boot scenarios: Indirect Boot (1a and 1b) and Direct Boot (2a and 2b)
configured via the INT_BOOTLOADER_EN generic If this generic is set true the indirect boot
scenario is used. This is also the default boot configuration of the processor. If
INT_BOOTLOADER_EN is set false the direct boot scenario is used.

The NEORV32 Processor Visit on GitHub

48 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Please note that the provided boot scenarios are just exemplary setups that
(should) fit most common requirements. Much more sophisticated boot scenarios
are possible by combining internal and external memories. For example, the
default internal bootloader could be used as first-level bootloader that loads (from
extern SPI flash) a second-level bootloader that is placed and execute in internal
IMEM. This second-level bootloader could then fetch the actual application and
store it to external data memory and transfers CPU control to that.

Indirect Boot

The indirect boot scenarios 1a and 1b use the processor-internal Bootloader. This boot setup is
enabled by setting the INT_BOOTLOADER_EN generic to true, which will implement the processor-
internal Bootloader ROM (BOOTROM). This read-only memory is pre-initialized during synthesis
with the default bootloader firmware. The bootloader provides several options to upload an
executable (via UART or from external SPI flash) and copies it to the beginning of the instruction
address space so the CPU can execute it.

Boot scenario 1a uses the processor-internal IMEM (MEM_INT_IMEM_EN = true). This scenario
implements the internal Instruction Memory (IMEM) as non-initialized RAM so the bootloader can
copy the actual executable to it.

Boot scenario 1b uses a processor-external IMEM (MEM_INT_IMEM_EN = false) that is connected via
the processor’s bus interface. In this scenario the internal Instruction Memory (IMEM) is not
implemented at all and the bootloader will copy the executable to the processor-external memory.
Hence, the external memory has to be implemented as RAM.

Direct Boot

The direct boot scenarios 2a and 2b do not use the processor-internal bootloader since the
INT_BOOTLOADER_EN generic is set false. In this configuration the Bootloader ROM (BOOTROM) is
not implemented at all and the CPU will directly begin executing code from the beginning of the
instruction address space after reset. An application-specific "pre-initialization" mechanism is
required in order to provide an executable in memory.

Boot scenario 2a uses the processor-internal IMEM (MEM_INT_IMEM_EN = true) that is
implemented as read-only memory in this scenario. It is pre-initialized (by the bitstream) with the
actual application executable during synthesis.

In contrast, boot scenario 2b uses a processor-external IMEM (MEM_INT_IMEM_EN = false). In this
scenario the system designer is responsible for providing an initialized external memory that
contains the actual application to be executed. If the external is not already initialized after reset, a
simple ROM containing a "polling loop" can be implemented that is exited as soon as the application
logic has finished initializing the memory with the acutal application code.

The NEORV32 RISC-V Processor Visit on GitHub

49 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5. Processor-Internal Modules
Basically, the processor is a SoC consisting of the NEORV32 CPU, peripheral/IO devices, embedded
memories, an external memory interface and a bus infrastructure to interconnect all units.
Additionally, the system implements an internal reset generator and a global clock
generator/divider.

Internal Reset Generator

Most processor-internal modules - except for the CPU and the watchdog timer - do
not have a dedicated reset signal. However, all devices can be reset by software by
clearing the corresponding unit’s control register. The automatically included
application start-up code (crt0.S) will perform a software-reset of all modules to
ensure a clean system reset state. This feature can be manually deactivated if
required. See section Start-Up Code (crt0) for more information.

The hardware reset signal of the processor can either be triggered via the external reset pin (rstn_i,
low-active), by the internal watchdog timer (if implemented) or by the on-chip debugger. The
external reset signal rstn_i is extended to be active for at least 4 cycles when triggered.

Internal Clock Divider

An internal clock divider generates 8 clock signals derived from the processor’s main clock input
clk_i. These derived clock signals are not actual clock signals. Instead, they are derived from a
simple counter and are used as "clock enable" signal by the different processor modules. Thus, the
whole design operates using only the main clock signal (single clock domain). Some of the processor
peripherals like the Watchdog or the UARTs can select one of the derived clock enabled signals for
their internal operation. If none of the connected modules require a clock signal from the divider, it
is automatically deactivated to reduce dynamic power.

The peripheral devices, which feature a time-based configuration, provide a three-bit prescaler
select in their according control register to select one out of the eight available clocks. The mapping
of the prescaler select bits to the actually obtained clock are shown in the table below. Here, f
represents the processor main clock from the top entity’s clk_i signal.

Prescaler bits: 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock: f/2 f/4 f/8 f/64 f/128 f/1024 f/2048 f/4096

Peripheral / IO Devices

The processor-internal peripheral/IO devices are located at the end of the 32-bit address space at
base address 0xFFFFFE00. A region of 512 bytes is reserved for this devices. Hence, all peripheral/IO
devices are accessed using a memory-mapped scheme. A special linker script as well as the
NEORV32 core software library abstract the specific memory layout for the user.

The NEORV32 Processor Visit on GitHub

50 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Space Mapping

The base address of each component/module has to be aligned to the total size of
the module’s occupied address space! The occupied address space has to be a
power of two (minimum 4 bytes)! Address spaces must not overlap!

Full-Word Write Accesses Only

All peripheral/IO devices can only be written in full-word mode (i.e. 32-bit). Byte or
half-word (8/16-bit) writes will trigger a store access fault exception. Read accesses
are not size constrained. Processor-internal memories as well as modules
connected to the external memory interface can still be written with a byte-wide
granularity.

Unimplemented Modules

When accessing an IO device that hast not been implemented (via the according
generic), a load/store access fault exception is triggered.

Module Reset

Most of the IO devices do not have a dedicated hardware reset at all. Instead, the
devices are reset via software by writing zero to the unit’s control register. A
general software-based reset of all IO/peripheral devices is done by the application
start-up code crt0.S. This feature can be manually deactivated if required. See
section Start-Up Code (crt0) for more information.

You should use the provided core software library to interact with the peripheral
devices. This prevents incompatibilities with future versions, since the hardware
driver functions handle all the register and register bit accesses.

A CMSIS-SVD-compatible System View Description (SVD) file including all
peripherals is available in sw/svd.

Interrupts of Processor-Internal Modules

Most peripheral/IO devices provide some kind of interrupt (for example to signal available
incoming data). These interrupts are entirely mapped to the CPU’s Custom Fast Interrupt Request
Lines. Note that all these interrupt lines are high-active and are permanently triggered until the
IRQ-causing condition is resolved.

Nomenclature for the Peripheral / IO Devices Listing

Each peripheral device chapter features a register map showing accessible control and data
registers of the according device including the implemented control and status bits. C-language
code can directly interact with these registers via pre-defined struct. Each IO/peripheral module
provides a unique struct. All accessible interface registers of this module are defined as members
of this struct. The pre-defined struct are defined int the main processor core library include file

The NEORV32 RISC-V Processor Visit on GitHub

51 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

sw/lib/include/neorv32.h.

The naming scheme of these low-level hardware access structs is
NEORV32_<module_name>.<register_name>.

Listing 1. Low-level hardware access example in C using the pre-defined struct

// Read from SYSINFO "CLK" register
uint32_t temp = NEORV32_SYSINFO.CLK;

The registers and/or register bits, which can be accessed directly using plain C-code, are marked
with a "[C]". Not all registers or register bits can be arbitrarily read/written. The following
read/write access types are available:

• r/w registers / bits can be read and written

• r/- registers / bits are read-only; any write access to them has no effect

• -/w these registers / bits are write-only; they auto-clear in the next cycle and are always read as
zero

Bits / registers that are not listed in the register map tables are not (yet)
implemented. These registers / bits are always read as zero. A write access to them
has no effect, but user programs should only write zero to them to keep
compatible with future extension.

When writing to read-only registers, the access is nevertheless acknowledged, but
no actual data is written. When reading data from a write-only register the result
is undefined.

The NEORV32 Processor Visit on GitHub

52 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.1. Instruction Memory (IMEM)

Hardware source file(s): neorv32_imem.entity.vhd entity-only definition

mem/neorv32_imem.default.
vhd

default platform-agnostic memory
architecture

Software driver file(s): none implicitly used

Top entity port: none

Configuration generics: MEM_INT_IMEM_EN implement processor-internal IMEM
when true

MEM_INT_IMEM_SIZE IMEM size in bytes

INT_BOOTLOADER_EN use internal bootloader when true
(implements IMEM as uninitialized
RAM, otherwise the IMEM is
implemented an pre-intialized ROM)

CPU interrupts: none

Implementation of the processor-internal instruction memory is enabled via the processor’s
MEM_INT_IMEM_EN generic. The size in bytes is defined via the MEM_INT_IMEM_SIZE generic. If
the IMEM is implemented, the memory is mapped into the instruction memory space and located
right at the beginning of the instruction memory space (default ispace_base_c = 0x00000000).

By default the IMEM is implemented as true RAM so the content can be modified during run time.
This is required when using a bootloader that can update the content of the IMEM at any time. If
you do not need the bootloader anymore - since your application development has completed and
you want the program to permanently reside in the internal instruction memory - the IMEM is
automatically implemented as pre-intialized ROM when the processor-internal bootloader is
disabled (INT_BOOTLOADER_EN = false).

When the IMEM is implemented as ROM, it will be initialized during synthesis (actually, by the
bitstream) with the actual application program image. The compiler toolchain will generate a VHDL
initialization file rtl/core/neorv32_application_image.vhd, which is automatically inserted into the
IMEM. If the IMEM is implemented as RAM (default), the memory will not be initialized at all.

The actual IMEM is split into two design files: a plain entity definition
(neorv32_imem.entity.vhd) and the actual architecture definition
(mem/neorv32_imem.default.vhd). This default architecture provides a generic and
platform independent memory design that (should) infers embedded memory
block. You can replace/modify the architecture source file in order to use platform-
specific features (like advanced memory resources) or to improve technology
mapping and/or timing.

If the IMEM is implemented as true ROM any write attempt to it will raise a store
access fault exception.

The NEORV32 RISC-V Processor Visit on GitHub

53 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.2. Data Memory (DMEM)

Hardware source file(s): neorv32_dmem.entity.vhd entity-only definition

mem/neorv32_dmem.default
.vhd

default platform-agnostic memory
architecture

Software driver file(s): none implicitly used

Top entity port: none

Configuration generics: MEM_INT_DMEM_EN implement processor-internal DMEM
when true

MEM_INT_DMEM_SIZE DMEM size in bytes

CPU interrupts: none

Implementation of the processor-internal data memory is enabled via the processor’s
MEM_INT_DMEM_EN generic. The size in bytes is defined via the MEM_INT_DMEM_SIZE generic. If
the DMEM is implemented, the memory is mapped into the data memory space and located right at
the beginning of the data memory space (default dspace_base_c = 0x80000000). The DMEM is always
implemented as true RAM.

The actual DMEM is split into two design files: a plain entity definition
(neorv32_dmem.entity.vhd) and the actual architecture definition
(mem/neorv32_dmem.default.vhd). This default architecture provides a generic and
platform independent memory design that (should) infers embedded memory
block. You can replace/modify the architecture source file in order to use platform-
specific features (like advanced memory resources) or to improve technology
mapping and/or timing.

The NEORV32 Processor Visit on GitHub

54 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.3. Bootloader ROM (BOOTROM)

Hardware source file(s): neorv32_boot_rom.vhd

Software driver file(s): none implicitly used

Top entity port: none

Configuration generics: INT_BOOTLOADER_EN implement processor-internal
bootloader when true

CPU interrupts: none

The default neorv32_boot_rom.vhd HDL source file provides a generic memory
design that infers embedded memory for larger memory configurations. You might
need to replace/modify the source file in order to use platform-specific features
(like advanced memory resources) or to improve technology mapping and/or
timing.

This HDL modules provides a read-only memory that contain the executable code image of the
bootloader. If the INT_BOOTLOADER_EN generic is true this module will be implemented and the
CPU boot address is modified to directly execute the code from the bootloader ROM after reset.

The bootloader ROM is located at address 0xFFFF0000 and can occupy a address space of up to 32kB.
The base address as well as the maximum address space size are fixed and cannot (should not!) be
modified as this might address collision with other processor modules.

The bootloader memory is read-only and is automatically initialized with the bootloader executable
image rtl/core/neorv32_bootloader_image.vhd during synthesis. The actual physical size of the ROM
is also determined via synthesis and expanded to the next power of two. For example, if the
bootloader code requires 10kB of storage, a ROM with 16kB will be generated. The maximum size
must not exceed 32kB.

Any write access to the BOOTROM will raise a store access fault exception.

Bootloader - Software

See section Bootloader for more information regarding the actual bootloader
software/executable itself.

Boot Configuration

See section Boot Configuration for more information regarding the processor’s
different boot scenarios.

The NEORV32 RISC-V Processor Visit on GitHub

55 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.4. Processor-Internal Instruction Cache (iCACHE)

Hardware source file(s): neorv32_icache.vhd

Software driver file(s): none implicitly used

Top entity port: none

Configuration generics: ICACHE_EN implement processor-internal
instruction cache when true

ICACHE_NUM_BLOCKS number of cache blocks (pages/lines)

ICACHE_BLOCK_SIZE size of a cache block in bytes

ICACHE_ASSOCIATIVITY associativity / number of sets

CPU interrupts: none

The processor features an optional cache for instructions to improve performance when using
memories with high access latencies. The cache is directly connected to the CPU’s instruction fetch
interface and provides full-transparent buffering of instruction fetch accesses to the entire address
space.

The cache is implemented if the ICACHE_EN generic is true. The size of the cache memory is
defined via ICACHE_BLOCK_SIZE (the size of a single cache block/page/line in bytes; has to be a
power of two and >= 4 bytes), ICACHE_NUM_BLOCKS (the total amount of cache blocks; has to be a
power of two and >= 1) and the actual cache associativity ICACHE_ASSOCIATIVITY (number of sets;
1 = direct-mapped, 2 = 2-way set-associative, has to be a power of two and >= 1).

If the cache associativity (ICACHE_ASSOCIATIVITY) is greater than 1 the LRU replacement policy
(least recently used) is used.

Cache Memory HDL

The default neorv32_icache.vhd HDL source file provides a generic memory design
that infers embedded memory. You might need to replace/modify the source file in
order to use platform-specific features (like advanced memory resources) or to
improve technology mapping and/or timing. Also, keep the features of the targeted
FPGA’s memory resources (block RAM) in mind when configuring the cache
size/layout to maximize and optimize resource utilization.

Caching Internal Memories

The instruction cache is intended to accelerate instruction fetches from processor-
external memories. Since all processor-internal memories provide an access
latency of one cycle (by default), caching internal memories does not bring a
relevant performance gain. However, it will slightly reduce traffic on the
processor-internal bus.

The NEORV32 Processor Visit on GitHub

56 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Manual Cache Clear/Reload

By executing the ifence.i instruction (Zifencei CPU extension) the cache is cleared
and a reload from main memory is triggered. Among other things this allows to
implement self-modifying code.

Retrieve Cache Configuration from Software

Software can retrieve the cache configuration from the SYSINFO - Cache
Configuration register.

Bus Access Fault Handling

The cache always loads a complete cache block (ICACHE_BLOCK_SIZE bytes) aligned to it’s size
every time a cache miss is detected. If any of the accessed addresses within a single block do not
successfully acknowledge the transfer (i.e. issuing an error signal or timing out) the whole cache
block is invalidated and any access to an address within this cache block will raise an instruction
fetch bus error exception.

The NEORV32 RISC-V Processor Visit on GitHub

57 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.5. Processor-External Memory Interface (WISHBONE) (AXI4-Lite)

Hardware source file(s): neorv32_wishbone.vhd

Software driver file(s): none implicitly used

Top entity port: wb_tag_o request tag output (3-bit)

wb_adr_o address output (32-bit)

wb_dat_i data input (32-bit)

wb_dat_o data output (32-bit)

wb_we_o write enable (1-bit)

wb_sel_o byte enable (4-bit)

wb_stb_o strobe (1-bit)

wb_cyc_o valid cycle (1-bit)

wb_ack_i acknowledge (1-bit)

wb_err_i bus error (1-bit)

fence_o an executed fence instruction

fencei_o an executed fence.i instruction

Configuration generics: MEM_EXT_EN enable external memory interface
when true

MEM_EXT_TIMEOUT number of clock cycles after which an
unacknowledged external bus access
will auto-terminate (0 = disabled)

MEM_EXT_PIPE_MODE when false (default): classic/standard
Wishbone protocol; when true:
pipelined Wishbone protocol

MEM_EXT_BIG_ENDIAN byte-order (Endianness) of external
memory interface; true=BIG,
false=little (default)

MEM_EXT_ASYNC_RX use registered RX path when false
(default); use async/direct RX path
when true

CPU interrupts: none

The external memory interface provides a Wishbone b4-compatible on-chip bus interface. The bus
interface is implemented when the MEM_EXT_EN generic is true. This interface can be used to
attach external memories, custom hardware accelerators, additional IO devices or all other kinds of
IP blocks.

The external interface is not mapped to a specific address space region. Instead, all CPU memory
accesses that do not target a processor-internal module are delegated to the external memory

The NEORV32 Processor Visit on GitHub

58 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

interface. In summary, a CPU load/store access is delegated to the external bus interface if…

1. it does not target the internal instruction memory IMEM (if implemented at all)

2. and it does not target the internal data memory DMEM (if implemented at all)

3. and it does not target the internal bootloader ROM or any of the IO devices - regardless if one or
more of these components are actually implemented or not.

If the Execute In Place module (XIP) is implemented accesses targeting the XIP
module are not forwarded to the external memory interface. See section Execute
In Place Module (XIP) for more information.

See section Address Space for more information.

Wishbone Bus Protocol

The external memory interface either uses the standard ("classic") Wishbone transaction protocol
(default) or pipelined Wishbone transaction protocol. The transaction protocol is configured via
the MEM_EXT_PIPE_MODE generic: When MEM_EXT_PIPE_MODE is false, all bus control signals
including STB are active and remain stable until the transfer is acknowledged/terminated. If
MEM_EXT_PIPE_MODE is true, all bus control except STB are active and remain until the transfer is
acknowledged/terminated. In this case, STB is asserted only during the very first bus clock cycle.

Table 6. Exemplary Wishbone bus accesses using "classic" and "pipelined" protocol

Classic Wishbone read access Pipelined Wishbone write access

A detailed description of the implemented Wishbone bus protocol and the
according interface signals can be found in the data sheet "Wishbone B4 -
WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP
Cores". A copy of this document can be found in the docs folder of this project.

Bus Access

The NEORV32 Wishbone gateway does not support burst transfer yet, so there is always just one

The NEORV32 RISC-V Processor Visit on GitHub

59 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

transfer in progress. Hence, the Wishbone STALL signal is not implemented. An accessed Wishbone
device does not have to respond immediately to a bus request by sending an ACK. instead, there is a
time window where the device has to acknowledge the transfer. This time window id configured by
the MEM_EXT_TIMEOUT top generic that defines the maximum time (in clock cycles) a bus access
can be pending before it is automatically terminated. If MEM_EXT_TIMEOUT is set to zero, the
timeout disabled an a bus access can take an arbitrary number of cycles to complete.

When MEM_EXT_TIMEOUT is greater than zero, the Wishbone gateway starts an internal
countdown whenever the CPU accesses a memory address via the external memory interface. If the
accessed memory / device does not acknowledge (via wb_ack_i) or terminate (via wb_err_i) the
transfer within MEM_EXT_TIMEOUT clock cycles, the bus access is automatically canceled setting
wb_cyc_o low again and a CPU load/store/instruction fetch bus access fault exception is raised.

Setting MEM_EXT_TIMEOUT to zero will permanently stall the CPU if the targeted
Wishbone device never responds. Hence, MEM_EXT_TIMEOUT should be always
set to a value greater than zero.

This feature can be used as safety guard if the external memory system does not
check for "address space holes". That means that accessing addresses, which do not
belong to a certain memory or device, do not permanently stall the processor due
to an unacknowledged/unterminated bus access. If the external memory system
can guarantee to access any bus access (even it targets an unimplemented address)
the timeout feature should be disabled (MEM_EXT_TIMEOUT = 0).

Wishbone Tag

The 3-bit wishbone wb_tag_o signal provides additional information regarding the access type. This
signal is compatible to the AXI4 AxPROT signal.

• wb_tag_o(0) 1: privileged access (CPU is in machine mode); 0: unprivileged access

• wb_tag_o(1) always zero (indicating "secure access")

• wb_tag_o(2) 1: instruction fetch access, 0: data access

Endianness

The NEORV32 CPU and the Processor setup are little-endian architectures. To allow direct
connection to a big-endian memory system the external bus interface provides an Endianness
configuration. The Endianness (of the external memory interface) can be configured via the
MEM_EXT_BIG_ENDIAN generic. By default, the external memory interface uses little-endian byte-
order (like the rest of the processor / CPU).

Application software can check the Endianness configuration of the external bus interface via the
SYSINFO module (see section System Configuration Information Memory (SYSINFO) for more
information).

Gateway Latency

The NEORV32 Processor Visit on GitHub

60 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

By default, the Wishbone gateway introduces two additional latency cycles: processor-outgoing
("TX") and processor-incoming ("RX") signals are fully registered. Thus, any access from the CPU to a
processor-external devices via Wishbone requires 2 additional clock cycles (at least; depending on
device’s latency).

If the attached Wishbone network / peripheral already provides output registers or if the Wishbone
network is not relevant for timing closure, the default buffering of incoming ("RX") data within the
gateway can be disabled by implementing an "asynchronous" RX path. The configuration is done
via the MEM_EXT_ASYNC_RX generic.

AXI4-Lite Connectivity

The AXI4-Lite wrapper (rtl/system_integration/neorv32_SystemTop_axi4lite.vhd) provides a
Wishbone-to- AXI4-Lite bridge, compatible with Xilinx Vivado (IP packager and block design
editor). All entity signals of this wrapper are of type std_logic or std_logic_vector, respectively.

The AXI Interface has been verified using Xilinx Vivado IP Packager and Block Designer. The AXI
interface port signals are automatically detected when packaging the core.

Figure 5. Example AXI SoC using Xilinx Vivado

Using the auto-termination timeout feature (MEM_EXT_TIMEOUT greater than
zero) is not AXI4 compliant as the AXI protocol does not support canceling of bus
transactions. Therefore, the NEORV32 top wrapper with AXI4-Lite interface
(rtl/system_integration/neorv32_SystemTop_axi4lite) configures
MEM_EXT_TIMEOUT = 0 by default.

The NEORV32 RISC-V Processor Visit on GitHub

61 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.6. Internal Bus Monitor (BUSKEEPER)

Hardware source file(s): neorv32_buskeeper.vhd

Software driver file(s): none

Top entity port: none

Configuration generics: none

Package constants: max_proc_int_response_time_
c

Access time window (#cycles)

CPU interrupts: none

Theory of Operation

The Bus Keeper is a fundamental component of the processor’s internal bus system that ensures
correct bus operations to maintain execution safety. The Bus Keeper monitors every single bus
transactions that is intimated by the CPU. If an accessed device responds with an error condition or
do not respond within a specific access time window, the according bus access fault exception is
raised. The following exceptions can be raised by the Bus Keeper (see section NEORV32 Trap Listing
for all CPU exceptions):

• TRAP_CODE_I_ACCESS: error during instruction fetch bus access

• TRAP_CODE_S_ACCESS: error during data store bus access

• TRAP_CODE_L_ACCESS: error during data load bus access

The access time window, in which an accessed device has to respond, is defined by the
max_proc_int_response_time_c constant from the processor’s VHDL package file
(rtl/neorv32_package.vhd). The default value is 15 clock cycles.

In case of a bus access fault exception application software can evaluate the Bus Keeper’s control
register NEORV32_BUSKEEPER.CTRL to retrieve further details of the bus exception. The
BUSKEEPER_ERR_FLAG bit indicates that an actual bus access fault has occurred. The bit is sticky
once set and is automatically cleared when reading or writing the NEORV32_BUSKEEPER.CTRL register.
The BUSKEEPER_ERR_TYPE bit defines the type of the bus fault:

• 0 - "Device Error": The bus access exception was cause by the memory-mapped device that has
been accessed (the device asserted it’s err_o).

• 1 - "Timeout Error": The bus access exception was caused by the Bus Keeper because the
accessed memory-mapped device did not respond within the access time window. Note that this
error type can also be raised by the optional timeout feature of the Processor-External Memory
Interface (WISHBONE) (AXI4-Lite)).

Bus access fault exceptions are also raised if a physical memory protection (PMP)
rule is violated. In this case the BUSKEEPER_ERR_FLAG bit remains zero (since the
error signal is not triggered by the BUSKEEPER but by the CPU’s PMP logic).

The NEORV32 Processor Visit on GitHub

62 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Table 7. BUSKEEPER register map (struct NEORV32_BUSKEEPER)

Address Name [C] Bit(s), Name [C] R/W Function

0xffffff7C NEORV32_BUSKE
EPER.CTRL

0 BUSKEEPER_ERR_TYPE r/- Bus error type, valid if
BUSKEEPER_ERR_FLAG

31 BUSKEEPER_ERR_FLAG r/c Sticky error flag, clears after
read or write access

The NEORV32 RISC-V Processor Visit on GitHub

63 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.7. Stream Link Interface (SLINK)

Hardware source file(s): neorv32_slink.vhd

Software driver file(s): neorv32_slink.c

neorv32_slink.h

Top entity port: slink_tx_dat_o TX link data (8x32-bit)

slink_tx_val_o TX link data valid (8-bit)

slink_tx_rdy_i TX link allowed to send (8-bit)

slink_rx_dat_i RX link data (8x32-bit)

slink_rx_val_i RX link data valid (8-bit)

slink_rx_rdy_o RX link ready to receive (8-bit)

Configuration generics: SLINK_NUM_TX Number of TX links to implement (0..8)

SLINK_NUM_RX Number of RX links to implement (0..8)

SLINK_TX_FIFO FIFO depth (1..32k) of TX links, has to
be a power of two

SLINK_RX_FIFO FIFO depth (1..32k) of RX links, has to
be a power of two

CPU interrupts: fast IRQ channel 10 SLINK RX IRQ (see Processor
Interrupts)

fast IRQ channel 11 SLINK TX IRQ (see Processor
Interrupts)

The SLINK component provides up to 8 independent RX (receiving) and TX (sending) links for
transmitting stream data. The interface provides higher bandwidth (and less latency) than the
external memory bus interface, which makes it ideally suited to couple custom stream processing
units (like CORDIC, FFTs or cryptographic accelerators).

Each individual link provides an internal FIFO for data buffering. The FIFO depth is globally
defined for all TX links via the SLINK_TX_FIFO generic and for all RX links via the SLINK_RX_FIFO
generic. The FIFO depth has to be at least 1, which will implement a simple input/output register.
The maximum value is limited to 32768 entries. Note that the FIFO depth has to be a power of two
(for optimal logic mapping).

The actual number of implemented RX/TX links is configured by the SLINK_NUM_RX and
SLINK_NUM_TX generics. The SLINK module will be synthesized only if at least one of these
generics is greater than zero. All unimplemented links are internally terminated and their
according output signals are pulled to low level.

The NEORV32 Processor Visit on GitHub

64 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The SLINK interface does not provide any additional tag signals (for example to
define a "stream destination address" or to indicate the last data word of a
"package"). Use a custom controller connected via the external memory bus
interface or use some of the processor’s GPIO ports to implement custom data tag
signals.

Theory of Operation

The SLINK provides eight data registers (DATA[i]) to access the links (read accesses will access the
RX links, write accesses will access the TX links), one control register (CTRL) and one status register
(STATUS).

The SLINK is globally activated by setting the control register’s enable bit SLINK_CTRL_EN. The
actual data links are accessed by reading or writing the according link data registers DATA[0] to
DATA[7]. For example, writing the DATA[0] will put the according data into the FIFO of TX link 0.
Accordingly, reading from DATA[0] will return one data word from the FIFO of RX link 0.

The configuration (done via the SLINK generics) can be checked by software by evaluating bit fields
in the control register. The SLINK_CTRL_TX_FIFO_Sx and SLINK_CTRL_RX_FIFO_Sx indicate the TX
& RX FIFO sizes. The SLINK_CTRL_TX_NUMx and SLINK_CTRL_RX_NUMx bits represent the
absolute number of implemented TX and RX links.

The status register shows the FIFO status flags of each RX and TX link. The SLINK_CTRL_RXx_AVAIL
flags indicate that there is at least one data word in the according RX link’s FIFO. The
SLINK_CTRL_TXx_FREE flags indicate there is at least one free entry in the according TX link’s FIFO.
The SLINK_STATUS_RXx_HALF and SLINK_STATUS_RXx_HALF flags show if a certain FIFO’s fill level
has exceeded half of its capacity.

Blocking Link Access

When directly accessing the link data registers (without checking the according FIFO status flags)
the access is as blocking. That means the CPU access will stall until the accessed link responds. For
example, when reading RX link 0 (via DATA[0] register) the CPU will stall, if there is not data
available in the according FIFO yet. The CPU access will complete as soon as RX link 0 receives new
data.

Vice versa, writing data to TX link 0 (via DATA[0] register) will stall the CPU access until there is at
least one free entry in the link’s FIFO.

The NEORV32 processor ensures that any CPU access to memory-mapped devices
(including the SLINK module) will time out after a certain number of cycles (see
section Bus Interface). Hence, blocking access to a stream link that does not
complete within a certain amount of cycles will raise a store bus access exception
when writing to a full TX link’s FIFO or a load bus access exception when reading
from an empty RX 's FIFO. Hence, this concept should only be used when
evaluating the half-full FIFO condition (for example via the SLINK interrupts)
before actual accessing links.

The NEORV32 RISC-V Processor Visit on GitHub

65 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

There is no RX FIFO overflow mechanism available yet.

Non-Blocking Link Access

For a non-blocking link access concept, the FIFO status flags in STATUS need to be checked before
reading/writing the actual link data register. For example, a non-blocking write access to a TX link 0
has to check SLINK_STATUS_TX0_FREE first. If the bit is set, the FIFO of TX link 0 can take another
data word and the actual data can be written to DATA[0]. If the bit is cleared, the link’s FIFO is full
and the status flag can be polled until it there is free space in the available.

This concept will not raise any exception as there is no "direct" access to the link data registers.
However, non-blocking accesses require additional instructions to check the according status flags
prior to the actual link access, which will reduce performance for high-bandwidth data streams.

Stream Link Interface & Protocol

The SLINK interface consists of three signals dat, val and rdy for each RX and TX link. Each signal is
an "array" with eight entires (one for each link). Note that an entry in slink_*x_dat is 32-bit wide
while entries in slink_*x_val and slink_*x_rdy are are just 1-bit wide.

The stream link protocol is based on a simple FIFO-like interface between a source (sender) and a
sink (receiver). Each link provides two signals for implementing a simple FIFO-style handshake.
The slink_*x_val signal is set by the source if the according slink_*x_dat (also set by the source)
contains valid data. The stream source has to ensure that both signals remain stable until the
according slink_*x_rdy signal is set by the stream sink to indicate it can accept another data word.

In summary, a data word is transferred if both slink_*x_val(i) and slink_*x_rdy(i) are high.

Figure 6. Exemplary stream link transfer

The SLINK handshake protocol is compatible with the AXI4-Stream base protocol.

SLINK Interrupts

The stream interface provides two independent interrupts that are globally driven by the RX and
TX link’s FIFO fill level status. Each RX and TX link provides an individual interrupt enable flag and
an individual interrupt type flag that allows to configure interrupts only for certain (or all) links
and for application- specific FIFO conditions. The interrupt configuration is done using the
NEORV32_SLINK.IRQ register. Any interrupt can only become pending if the SLINK module is enabled
at all.

The NEORV32 Processor Visit on GitHub

66 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://developer.arm.com/documentation/ihi0051/a/Introduction/About-the-AXI4-Stream-protocol
https://github.com/stnolting/neorv32

There is no RX FIFO overflow mechanism available yet.

The current FIFO fill-level of a specific RX link can only raise an interrupt request if it’s interrupt
enable flag SLINK_IRQ_RX_EN is set. Vice versa, the current FIFO fill-level of a specific TX link can
only raise an interrupt request if it’s interrupt enable flag SLINK_IRQ_TX_EN is set.

The RX link’s SLINK_IRQ_RX_MODE flags define the FIFO fill-level condition for raising an RX
interrupt request: * If a link’s interrupt mode flag is 0 an IRQ is generated when the link’s FIFO
becomes not empty ("RX data available"). * If a link’s interrupt mode flag is 1 an IRQ is generated
when the link’s FIFO becomes at least half-full ("time to get data from RX FIFO to prevent
overflow").

The TX link’s SLINK_IRQ_TX_MODE flags define the FIFO fill-level condition for raising an TX
interrupt request: * If a link’s interrupt mode flag is 0 an IRQ is generated when the link’s FIFO
becomes not full ("space left in FIFO for new TX data"). * If a link’s interrupt mode flag is 1 an IRQ is
generated when the link’s FIFO becomes less than half-full ("SW can send SLINK_TX_FIFO/2 data
words without checking any flags").

Once the SLINK’s RX or TX interrupt has become pending, it has to be explicitly cleared again by
writing zero to the according mip CSR bit.

The interrupt configuration register NEORV32_SLINK.IRQ should we written before
the SLINK module is actually enabled.

If SLINK_RX_FIFO is 1 all SLINK_IRQ_RX_MODE bits are hardwired to one. If
SLINK_TX_FIFO is 1 all SLINK_IRQ_TX_MODE bits are hardwired to one.

Table 8. SLINK register map (struct NEORV32_SLINK)

The NEORV32 RISC-V Processor Visit on GitHub

67 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xfffffec0

The NEORV32 Processor Visit on GitHub

68 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

NEORV32_SLINK.CT
RL

31
SLINK
_CTRL
_EN

r/w SLINK global enable

30:16
reserv
ed

r/- reserved, read as zero

15:12
SLINK
_CTRL
_TX_F
IFO_S
3 :
SLINK
_CTRL
_TX_F
IFO_S
0

r/- TX links FIFO depth, log2 of_SLINK_TX_FIFO_
generic

11:8
SLINK
_CTRL
_RX_F
IFO_S
3 :
SLINK
_CTRL
_RX_F
IFO_S
0

r/- RX links FIFO depth, log2 of_SLINK_RX_FIFO_
generic

7:4
SLINK
_CTRL
_TX_N
UM3 :
SLINK
_CTRL
_TX_N
UM0

r/- Number of implemented TX links

3:0
SLINK
_CTRL
_RX_N
UM3 :
SLINK
_CTRL
_RX_N
UM0

r/- Number of implemented RX links

0xfffffec4 - 31:0 r/- reserved

The NEORV32 RISC-V Processor Visit on GitHub

69 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xfffffec8 NEORV32_SLINK.IR
Q

31:24
SLINK
IRQ
RX_E
N_MS
B :
SLINK
IRQ
RX_E
N_LSB

r/w RX interrupt enable for link 7..0

23:16
SLINK
IRQ
RX_M
ODE_
MSB :
SLINK
IRQ
RX_M
ODE_
LSB

r/w RX IRQ mode for link 7..0: 0 = FIFO rises above
half-full; 1 = FIFO not empty

15:8
SLINK
IRQ
TX_E
N_MS
B :
SLINK
IRQ
TX_E
N_LSB

r/w TX interrupt enable for link 7..0

7:0
SLINK
IRQ
TX_M
ODE_
MSB :
SLINK
IRQ
TX_M
ODE_
LSB

r/w TX IRQ mode for link 7..0: 0 = FIFO falls below half-
full; 1 = FIFO not full

The NEORV32 Processor Visit on GitHub

70 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xfffffeec - 31:0 r/- reserved

The NEORV32 RISC-V Processor Visit on GitHub

71 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xfffffed0

The NEORV32 Processor Visit on GitHub

72 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

NEORV32_SLINK.ST
ATUS

31:24
SLINK
_STAT
US_TX
7_HA
LF :
SLINK
_STAT
US_TX
0_HA
LF

r/- TX link 7..0 FIFO fill level is >= half-full

23:16
SLINK
_STAT
US_R
X7_H
ALF :
SLINK
_STAT
US_R
X0_H
ALF

r/- RX link 7..0 FIFO fill level is >= half-full

15:8
SLINK
_STAT
US_TX
7_FRE
E :
SLINK
_STAT
US_TX
0_FRE
E

r/- At least one free TX FIFO entry available for link
7..0

7:0
SLINK
_STAT
US_R
X7_A
VAIL :
SLINK
_STAT
US_R
X0_A
VAIL

r/- At least one data word in RX FIFO available for
link 7..0

0xfffffed4 :
0xfffffedc

- 31:0 r/- reserved

0xfffffee0 NEORV32_SLINK.DA
TA[0]

31:0 r/w Link 0 RX/TX data

0xfffffee4 NEORV32_SLINK.DA
TA[1]

31:0 r/w Link 1 RX/TX data

0xfffffee8 NEORV32_SLINK.DA
TA[2]

31:0 r/w Link 2 RX/TX data

0xfffffeec NEORV32_SLINK.DA
TA[3]

31:0 r/w Link 3 RX/TX data

0xfffffef0 NEORV32_SLINK.DA
TA[4]

31:0 r/w Link 4 RX/TX data

0xfffffef4 NEORV32_SLINK.DA
TA[5]

31:0 r/w Link 5 RX/TX data

0xfffffef8 NEORV32_SLINK.DA
TA[6]

31:0 r/w Link 6 RX/TX data

0xfffffefc NEORV32_SLINK.DA
TA[7]

31:0 r/w Link 7 RX/TX data

The NEORV32 RISC-V Processor Visit on GitHub

73 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.8. General Purpose Input and Output Port (GPIO)

Hardware source file(s): neorv32_gpio.vhd

Software driver file(s): neorv32_gpio.c

neorv32_gpio.h

Top entity port: gpio_o 64-bit parallel output port

gpio_i 64-bit parallel input port

Configuration generics: IO_GPIO_EN implement GPIO port when true

CPU interrupts: none

The general purpose parallel IO port unit provides a simple 64-bit parallel input port and a 64-bit
parallel output port. These ports can be used chip-externally (for example to drive status LEDs,
connect buttons, etc.) or chip-internally to provide control signals for other IP modules. The
component is disabled for implementation when the IO_GPIO_EN generic is set false. In this case
the GPIO output port gpio_o is tied to all-zero.

Access Atomicity

The GPIO modules uses two memory-mapped registers (each 32-bit) each for
accessing the input and output signals. Since the CPU can only process 32-bit "at
once" updating the entire output cannot be performed within a single clock cycle.

INPUT is read-only

Write accesses to the NEORV32_GPIO.INPUT_LO and NEORV32_GPIO.INPUT_HI registers
will raise a store bus error exception. The BUSKEEPER will indicate a
"DEVICE_ERR" in this case.

Table 9. GPIO unit register map (struct NEORV32_GPIO)

Address Name [C] Bit(s) R/W Function

0xffffffc0 NEORV32_GPIO.I
NPUT_LO

31:0 r/- parallel input port pins 31:0

0xffffffc4 NEORV32_GPIO.I
NPUT_HI

31:0 r/- parallel input port pins 63:32

0xffffffc8 NEORV32_GPIO.O
UTPUT_LO

31:0 r/w parallel output port pins 31:0

0xffffffcc NEORV32_GPIO.O
UTPUT_HI

31:0 r/w parallel output port pins 63:32

The NEORV32 Processor Visit on GitHub

74 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.9. Watchdog Timer (WDT)

Hardware source file(s): neorv32_wdt.vhd

Software driver file(s): neorv32_wdt.c

neorv32_wdt.h

Top entity port: none

Configuration generics: IO_WDT_EN implement watchdog when true

CPU interrupts: fast IRQ channel 0 watchdog timer overflow (see
Processor Interrupts)

Theory of Operation

The watchdog (WDT) provides a last resort for safety-critical applications. The WDT has an internal
20-bit wide counter that needs to be reset every now and then by the user program. If the counter
overflows, either a system reset or an interrupt is generated (depending on the configured
operation mode). The WDT_CTRL_HALF flag of the control register CTRL indicates that at least half
of the maximum timeout value has been reached.

The watchdog is enabled by setting the WDT_CTRL_EN bit. The clock used to increment the internal
counter is selected via the 3-bit WDT_CTRL_CLK_SELx prescaler:

WDT_CTRL_CLK_SELx Main clock prescaler Timeout period in clock cycles

0b000 2 2 097 152

0b001 4 4 194 304

0b010 8 8 388 608

0b011 64 67 108 864

0b100 128 134 217 728

0b101 1024 1 073 741 824

0b110 2048 2 147 483 648

0b111 4096 4 294 967 296

Whenever the internal timer overflows the watchdog executes one of two possible actions: Either a
hard processor reset is triggered or an interrupt is requested at CPU’s fast interrupt channel #0. The
WDT_CTRL_MODE bit defines the action to be taken on an overflow: When cleared, the Watchdog
will assert an IRQ, when set the WDT will cause a system reset. The configured action can also be
triggered manually at any time by setting the WDT_CTRL_FORCE bit. The watchdog is reset by
setting the WDT_CTRL_RESET bit.

A watchdog interrupt can only occur if the watchdog is enabled and interrupt mode is enabled. A
triggered interrupt has to be cleared again by writing zero to the according mip CSR bit.

The cause of the last action of the watchdog can be determined via the WDT_CTRL_RCAUSE flag. If

The NEORV32 RISC-V Processor Visit on GitHub

75 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

this flag is zero, the processor has been reset via the external reset signal. If this flag is set the last
system reset was initiated by the watchdog.

The Watchdog control register can be locked in order to protect the current configuration. The lock
is activated by setting bit WDT_CTRL_LOCK. In the locked state any write access to the configuration
flags is ignored (see table below, "writable if locked"). Read accesses to the control register are not
effected. The lock can only be removed by a system reset (via external reset signal or via a
watchdog reset action).

Watchdog Operation during Debugging

By default the watchdog pauses operation when the CPU enters debug mode and
will resume normal operation after the CPU has left debug mode. This will prevent
an unintended watchdog timeout (and a hardware reset if configured) during a
debug session. However, the watchdog can be configured to keep operating even
when the CPU is in debug mode by setting the control register’s WDT_CTRL_DBEN
bit. If the CPU’s debug mode is not implemented this flag is hardwired to zero.

Table 10. WDT register map (struct NEORV32_WDT)

The NEORV32 Processor Visit on GitHub

76 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Rese
t

valu
e

Writable
if locked

Function

0xffffffbc NEORV32_WD
T.CTRL

0 WDT_CTRL_EN r/w 0 no watchdog enable

1 WDT_CTRL_CLK_SEL0 r/w 0 no 3-bit clock prescaler
select2 WDT_CTRL_CLK_SEL1 r/w 0 no

3 WDT_CTRL_CLK_SEL2 r/w 0 no

4 WDT_CTRL_MODE r/w 0 no overflow action:
1=reset, 0=IRQ

5 WDT_CTRL_RCAUSE r/- 0 - cause of last system
reset: 0=caused by
external reset signal,
1=caused by watchdog

6 WDT_CTRL_RESET -/w - yes watchdog reset when
set, auto-clears

7 WDT_CTRL_FORCE -/w - yes force configured
watchdog action when
set, auto-clears

8 WDT_CTRL_LOCK r/w 0 no lock access to
configuration when set,
clears only on system
reset (via external reset
signal OR watchdog
reset action = reset)

9 WDT_CTRL_DBEN r/w 0 no allow WDT to continue
operation even when in
debug mode

10 WDT_CTRL_HALF r/- 0 - set if at least half of the
max. timeout counter
value has been reached

The NEORV32 RISC-V Processor Visit on GitHub

77 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.10. Machine System Timer (MTIME)

Hardware source file(s): neorv32_mtime.vhd

Software driver file(s): neorv32_mtime.c

neorv32_mtime.h

Top entity port: mtime_i System time input from external
MTIME

mtime_o System time output (64-bit) for SoC

Configuration generics: IO_MTIME_EN implement MTIME when true

CPU interrupts: MTI machine timer interrupt (see
Processor Interrupts)

The MTIME module implements the memory-mapped MTIME machine timer from the official RISC-
V specifications. This module features a 64-bit system timer incrementing with the primary
processor clock. Besides accessing the MTIME register via memory operation the current system
time can also be obtained using the time[h] CSRs. Furthermore, the current system time is made
available for processor-external usage via the top’s mtime_o signal.

The 64-bit system time can be accessed via the TIME_LO and TIME_HI memory-mapped registers
(read/write) and also via the CPU’s time[h] CSRs (read-only). A 64-bit time compare register -
accessible via the memory-mapped TIMECMP_LO and TIMECMP_HI registers - is used to configure the
CPU’s MTI (machine timer interrupt). The interrupt is triggered whenever TIME (high & low part) is
greater than or equal to TIMECMP (high & low part). The interrupt remain active (=pending) until TIME
becomes less TIMECMP again (either by modifying TIME or TIMECMP).

If the processor-internal MTIME module is NOT implemented, the top’s mtime_i
input signal is used to update the time[h] CSRs and the MTI machine timer CPU
interrupt (MTI) is directly connected to the top’s mtime_irq_i input. The mtime_o
signal is hardwired to zero in this case.

Table 11. MTIME register map (struct NEORV32_MTIME)

Address Name [C] Bits R/W Function

0xffffff90 NEORV32_MTIME.TIME_
LO

31:0 r/w machine system time, low word

0xffffff94 NEORV32_MTIME.TIME_
HI

31:0 r/w machine system time, high word

0xffffff98 NEORV32_MTIME.TIMEC
MP_LO

31:0 r/w time compare, low word

0xffffff9c NEORV32_MTIME.TIMEC
MP_HI

31:0 r/w time compare, high word

The NEORV32 Processor Visit on GitHub

78 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.11. Primary Universal Asynchronous Receiver and Transmitter (UART0)

Hardware source file(s): neorv32_uart.vhd

Software driver file(s): neorv32_uart.c

neorv32_uart.h

Top entity port: uart0_txd_o serial transmitter output UART0

uart0_rxd_i serial receiver input UART0

uart0_rts_o flow control: RX ready to receive

uart0_cts_i flow control: TX allowed to send

Configuration generics: IO_UART0_EN implement UART0 when true

UART0_RX_FIFO RX FIFO depth (power of 2, min 1)

UART0_TX_FIFO TX FIFO depth (power of 2, min 1)

CPU interrupts: fast IRQ channel 2 RX interrupt

fast IRQ channel 3 TX interrupt (see Processor Interrupts)

The UART is a standard serial interface mainly used to establish a communication channel between
a host computer computer/user and an application running on the embedded processor.

The NEORV32 UARTs feature independent transmitter and receiver with a fixed frame
configuration of 8 data bits, an optional parity bit (even or odd) and a fixed stop bit. The actual
transmission rate - the Baudrate - is programmable via software. Optional FIFOs with custom sizes
can be configured for the transmitter and receiver independently.

The UART features two memory-mapped registers CTRL and DATA, which are used for configuration,
status check and data transfer.

Standard Console(s)

Please note that all default example programs and software libraries of the
NEORV32 software framework (including the bootloader and the runtime
environment) use the primary UART (UART0) as default user console interface.
Furthermore, UART0 is used to implement all the standard input, output and error
consoles (STDIN, STDOUT and STDERR).

Theory of Operation

UART0 is enabled by setting the UART_CTRL_EN bit in the UART0 control register CTRL. The Baud
rate is configured via a 12-bit UART_CTRL_BAUDxx baud prescaler (baud_prsc) and a 3-bit
UART_CTRL_PRSCx clock prescaler (clock_prescaler) that scales the processor’s primary clock (fmain).

Table 12. UART0 prescaler configuration

UART_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

The NEORV32 RISC-V Processor Visit on GitHub

79 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Baud rate = (fmain[Hz] / clock_prescaler) / (baud_prsc + 1)

A new transmission is started by writing the data byte to be send to the lowest byte of the DATA
register. The transfer is completed when the UART_CTRL_TX_BUSY control register flag returns to
zero. A new received byte is available when the UART_DATA_AVAIL flag of the DATA register is set. A
"frame error" in a received byte (invalid stop bit) is indicated via the UART_DATA_FERR flag in the
DATA register. The flag is cleared by reading the DATA register.

A transmission (RX or TX) can be terminated at any time by disabling the UART
module by clearing the UART_CTRL_EN control register bit.

RX and TX FIFOs

UART0 provides optional FIFO buffers for the transmitter and the receiver. The UART0_RX_FIFO
generic defines the depth of the RX FIFO (for receiving data) while the UART0_TX_FIFO defines the
depth of the TX FIFO (for sending data). Both generics have to be a power of two with a minimal
allowed value of 1. This minimal value will implement simple "double-buffering" instead of full-
featured FIFOs. Both FIFOs are cleared whenever UART0 is disabled (clearing UART_CTRL_EN in
CTRL).

The state of both FIFO (empty, at lest half-full, full) is available via the UART_CTRL?X_EMPTY_,
UART_CTRL?X_HALF_ and UART_CTRL*X_FULL_ flags in the CTRL register.

If the RX FIFO is already full and new data is received by the receiver unit, the UART_DATA_OVERR
flag in the DATA register is set indicating an "overrun". This flag is cleared by reading the DATA
register.

In contrast to other FIFO-equipped peripherals, software cannot determine the
UART’s FIFO size configuration by reading specific control register bits (simply
because there are no bits left in the control register).

Hardware Flow Control - RTS/CTS

UART0 supports optional hardware flow control using the standard CTS (clear to send) and/or RTS
(ready to send / ready to receive "RTR") signals. Both hardware control flow mechanisms can be
enabled individually.

• If RTS hardware flow control is enabled by setting the UART_CTRL_RTS_EN control register
flag, the UART will pull the uart0_rts_o signal low if the UART’s receiver is ready to receive new
data. As long as this signal is low the connected device can send new data. uart0_rts_o is always
LOW if the UART is disabled. The RTS line is de-asserted (going high) as soon as the start bit of a
new incoming char has been detected.

• If CTS hardware flow control is enabled by setting the UART_CTRL_CTS_EN control register
flag, the UART’s transmitter will not start sending a new data until the uart0_cts_i signal goes
low. During this time, the UART busy flag UART_CTRL_TX_BUSY remains set. If uart0_cts_i is
asserted, no new data transmission will be started by the UART. The state of the uart0_cts_i
signal has no effect on a transmission being already in progress. Application software can check

The NEORV32 Processor Visit on GitHub

80 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

the current state of the uart0_cts_o input signal via the UART_CTRL_CTS control register flag.

Parity Modes

An optional parity bit can be added to the data stream if the UART_CTRL_PMODE1 flag is set. When
UART_CTRL_PMODE0 is zero, the UART operates in "even parity" mode. If this flag is set, the UART
operates in "odd parity" mode. Parity errors in received data are indicated via the
UART_DATA_PERR flag in the DATA register. This flag is updated with each new received character
and is cleared by reading the DATA register.

UART Interrupts

UART0 features two independent interrupt for signaling certain RX and TX conditions. The
behavior of these conditions differs based on the configured FIFO sizes. If the according FIFO size is
greater than 1, the UART_CTRL_RX_IRQ and UART_CTRL_TX_IRQ CTRL flags allow a more fine-
grained IRQ configuration. An interrupt can only become pending if the according interrupt
condition is fulfilled and the UART is enabled at all.

• If UART0_RX_FIFO is exactly 1, the RX interrupt goes pending when data becomes available in
the RX FIFO (→ UART_CTRL_RX_EMPTY clears). UART_CTRL_RX_IRQ is hardwired to 0 in this
case.

• If UART0_TX_FIFO is exactly 1, the TX interrupt goes pending when at least one entry in the TX
FIFO becomes free (→ UART_CTRL_TX_FULL clears). UART_CTRL_TX_IRQ is hardwired to 0 in
this case.

• If UART0_RX_FIFO is greater than 1: If UART_CTRL_RX_IRQ is 0 the RX interrupt goes pending
when data becomes available in the RX FIFO (→ UART_CTRL_RX_EMPTY clears). If
UART_CTRL_RX_IRQ is 1 the RX interrupt becomes pending the RX FIFO becomes at least half-
full (→ UART_CTRL_RX_HALF sets).

• If UART0_TX_FIFO is greater than 1: If UART_CTRL_TX_IRQ is 0 the TX interrupt goes pending
when at least one entry in the TX FIFO becomes free (→ UART_CTRL_TX_FULL clears). If
UART_CTRL_TX_IRQ is 1 the TX interrupt goes pending when the RX FIFO becomes less than
half-full (→ UART_CTRL_TX_HALF clears).

Once the RX or TX interrupt has become pending, it has to be explicitly cleared again by writing
zero to the according mip CSR bit.

Simulation Mode

The default UART0 operation will transmit any data written to the DATA register via the serial TX line
at the defined baud rate via the physical link. To accelerate UART0 output during simulation (and
also to dump large amounts of data) the UART0 features a simulation mode.

Simulation mode is enabled by setting the UART_CTRL_SIM_MODE bit in the UART0’s control
register CTRL. Any other UART0 configuration bits are irrelevant for this mode but UART0 has to be
enabled via the UART_CTRL_EN bit. There will be no physical UART0 transmissions via uart0_txd_o
at all when simulation mode is enabled. Furthermore, no interrupts (RX & TX) will be triggered.

The NEORV32 RISC-V Processor Visit on GitHub

81 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

When the simulation mode is enabled any data written to DATA[7:0] is directly output as ASCII char
to the simulator console. Additionally, all chars are also stored to a text file
neorv32.uart0.sim_mode.text.out in the simulation home folder.

Furthermore, the whole 32-bit word written to DATA[31:0] is stored as plain 8-char hexadecimal
value to a second text file neorv32.uart0.sim_mode.data.out also located in the simulation home
folder.

More information regarding the simulation-mode of the UART0 can be found in
the User Guide section Simulating the Processor.

Table 13. UART0 register map (struct NEORV32_UART0)

The NEORV32 Processor Visit on GitHub

82 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/ug/#_simulating_the_processor
https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/
W

Function

0xffffffa0

The NEORV32 RISC-V Processor Visit on GitHub

83 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/
W

Function

NEORV32_UART0.
CTRL

11:0
UART_CTRL_BAUDxx

r/w 12-bit BAUD value configuration value

12
UART_CTRL_SIM_MO
DE

r/w enable simulation mode

13
UART_CTRL_RX_EMP
TY

r/- RX FIFO is empty

14
UART_CTRL_RX_HAL
F

r/- RX FIFO is at least half-full

15
UART_CTRL_RX_FULL

r/- RX FIFO is full

16
UART_CTRL_TX_EMP
TY

r/- TX FIFO is empty

17
UART_CTRL_TX_HALF

r/- TX FIFO is at least half-full

18
UART_CTRL_TX_FULL

r/- TX FIFO is full

19 - r/- reserved, read as zero

20
UART_CTRL_RTS_EN

r/w enable RTS hardware flow control

21
UART_CTRL_CTS_EN

r/w enable CTS hardware flow control

22
UART_CTRL_PMODE0

r/w parity bit enable and configuration (00
/01= no parity; 10=even parity; 11=odd
parity)23

UART_CTRL_PMODE1
r/w

24 UART_CTRL_PRSC0 r/w 3-bit baudrate clock prescaler select

25 UART_CTRL_PRSC1 r/w

26 UART_CTRL_PRSC2 r/w

27 UART_CTRL_CTS r/- current state of UART’s CTS input signal

28 UART_CTRL_EN r/w UART enable

29
UART_CTRL_RX_IRQ

r/w RX IRQ mode: 1=FIFO at least half-full;
0=FIFO not empty

30
UART_CTRL_TX_IRQ

r/w TX IRQ mode: 1=FIFO less than half-full;
0=FIFO not full

31
UART_CTRL_TX_BUSY

r/- transmitter busy flag

0xffffffa4 NEORV32_UART0.
DATA

7:0 UART_DATA_MSB
: UART_DATA_LSB

r/w receive/transmit data (8-bit)

31:0 - -/w simulation data output

28 UART_DATA_PERR r/- RX parity error

29 UART_DATA_FERR r/- RX data frame error (stop bit nt set)

30
UART_DATA_OVERR

r/- RX data overrun

31 UART_DATA_AVAIL r/- RX data available when set

The NEORV32 Processor Visit on GitHub

84 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.12. Secondary Universal Asynchronous Receiver and Transmitter
(UART1)

Hardware source file(s): neorv32_uart.vhd

Software driver file(s): neorv32_uart.c

neorv32_uart.h

Top entity port: uart1_txd_o serial transmitter output UART1

uart1_rxd_i serial receiver input UART1

uart1_rts_o flow control: RX ready to receive

uart1_cts_i flow control: TX allowed to send

Configuration generics: IO_UART1_EN implement UART1 when true

UART1_RX_FIFO RX FIFO depth (power of 2, min 1)

UART1_TX_FIFO TX FIFO depth (power of 2, min 1)

CPU interrupts: fast IRQ channel 4 RX interrupt

fast IRQ channel 5 TX interrupt (see Processor Interrupts)

Theory of Operation

The secondary UART (UART1) is functional identical to the primary UART (Primary Universal
Asynchronous Receiver and Transmitter (UART0)). Obviously, UART1 has different addresses for the
control register (CTRL) and the data register (DATA) - see the register map below. The register’s
bits/flags use the same bit positions and naming as for the primary UART. The RX and TX interrupts
of UART1 are mapped to different CPU fast interrupt (FIRQ) channels.

Simulation Mode

The secondary UART (UART1) provides the same simulation options as the primary UART. However,
output data is written to UART1-specific files: neorv32.uart1.sim_mode.text.out is used to store plain
ASCII text and neorv32.uart1.sim_mode.data.out is used to store full 32-bit hexadecimal data words.

Table 14. UART1 register map (struct NEORV32_UART1)

The NEORV32 RISC-V Processor Visit on GitHub

85 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/
W

Function

0xffffffd0

The NEORV32 Processor Visit on GitHub

86 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/
W

Function

NEORV32_UART1.
CTRL

11:0
UART_CTRL_BAUDxx

r/w 12-bit BAUD value configuration value

12
UART_CTRL_SIM_MO
DE

r/w enable simulation mode

13
UART_CTRL_RX_EMP
TY

r/- RX FIFO is empty

14
UART_CTRL_RX_HAL
F

r/- RX FIFO is at least half-full

15
UART_CTRL_RX_FULL

r/- RX FIFO is full

16
UART_CTRL_TX_EMP
TY

r/- TX FIFO is empty

17
UART_CTRL_TX_HALF

r/- TX FIFO is at least half-full

18
UART_CTRL_TX_FULL

r/- TX FIFO is full

19 - r/- reserved, read as zero

20
UART_CTRL_RTS_EN

r/w enable RTS hardware flow control

21
UART_CTRL_CTS_EN

r/w enable CTS hardware flow control

22
UART_CTRL_PMODE0

r/w parity bit enable and configuration (00
/01= no parity; 10=even parity; 11=odd
parity)23

UART_CTRL_PMODE1
r/w

24 UART_CTRL_PRSC0 r/w 3-bit baudrate clock prescaler select

25 UART_CTRL_PRSC1 r/w

26 UART_CTRL_PRSC2 r/w

27 UART_CTRL_CTS r/- current state of UART’s CTS input signal

28 UART_CTRL_EN r/w UART enable

29
UART_CTRL_RX_IRQ

r/w RX IRQ mode: 1=FIFO at least half-full;
0=FIFO not empty; hardwired to zero if
UART0_RX_FIFO = 1

30
UART_CTRL_TX_IRQ

r/w TX IRQ mode: 1=FIFO less than half-full;
0=FIFO not full; hardwired to zero if
UART0_TX_FIFO = 1

31
UART_CTRL_TX_BUSY

r/- transmitter busy flag

0xffffffd4 NEORV32_UART1.
DATA

7:0 UART_DATA_MSB
: UART_DATA_LSB

r/w receive/transmit data (8-bit)

31:0 - -/w simulation data output

28 UART_DATA_PERR r/- RX parity error

29 UART_DATA_FERR r/- RX data frame error (stop bit nt set)

30
UART_DATA_OVERR

r/- RX data overrun

31 UART_DATA_AVAIL r/- RX data available when set

The NEORV32 RISC-V Processor Visit on GitHub

87 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.13. Serial Peripheral Interface Controller (SPI)

Hardware source file(s): neorv32_spi.vhd

Software driver file(s): neorv32_spi.c

neorv32_spi.h

Top entity port: spi_sck_o 1-bit serial clock output

spi_sdo_o 1-bit serial data output

spi_sdi_i 1-bit serial data input

spi_csn_i 8-bit dedicated chip select (low-active)

Configuration generics: IO_SPI_EN implement SPI controller when true

CPU interrupts: fast IRQ channel 6 transmission done interrupt (see
Processor Interrupts)

Theory of Operation

SPI is a synchronous serial transmission interface for fast on-board communications. The NEORV32
SPI transceiver supports 8-, 16-, 24- and 32-bit wide transmissions. The unit provides 8 dedicated
chip select signals via the top entity’s spi_csn_o signal, which are directly controlled by the SPI
module (no additional GPIO required).

The NEORV32 SPI module only supports host mode. Transmission are initiated only
by the processor’s SPI module (and not by an external SPI module).

The SPI unit is enabled by setting the SPI_CTRL_EN bit in the CTRL control register. No transfer can
be initiated and no interrupt request will be triggered if this bit is cleared. Furthermore, a transfer
being in process can be terminated at any time by clearing this bit.

Changes to the CTRL control register should be made only when the SPI module is
idle as they directly effect transmissions being in-progress.

A transmission can be terminated at any time by disabling the SPI module by
clearing the SPI_CTRL_EN control register bit.

The data quantity to be transferred within a single transmission is defined via the SPI_CTRL_SIZEx
bits. The SPI module supports 8-bit (00), 16-bit (01), 24-bit (10) and 32-bit (11) transfers.

A transmission is started when writing data to the DATA register. The data must be LSB-aligned. So if
the SPI transceiver is configured for less than 32-bit transfers data quantity, the transmit data must
be placed into the lowest 8/16/24 bit of DATA. Vice versa, the received data is also always LSB-aligned.
Application software should only actually process the amount of bits that were configured using
SPI_CTRL_SIZEx when reading DATA.

The NEORV32 Processor Visit on GitHub

88 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The NEORV32 SPI module only support MSB-first mode. Data can be reversed
before writing DATA (for TX) / after reading DATA (for RX) to implement LSB-first
transmissions. Note that in both cases data in ` DATA` still needs to be LSB-
aligned.

The actual transmission length is left to the user: after asserting chip-select an
arbitrary amount of transmission with arbitrary data quantity (SPI_CTRL_SIZEx)
can be made before de-asserting chip-select again.

The SPI controller features 8 dedicated chip-select lines. These lines are controlled via the control
register’s SPI_CTRL_CSx bits. When a specific SPI_CTRL_CSx bit is set, the according chip-select line
spi_csn_o(x) goes low (low-active chip-select lines).

The dedicated SPI chip-select signals can be seen as general purpose outputs. These
are intended to control the accessed device’s chip-select signal but can also be use
for controlling other shift register signals (like data strobe or output-enables).

SPI Clock Configuration

The SPI module supports all standard SPI clock modes (0, 1, 2, 3), which is via the two control
register bits SPI_CTRL_CPHA and SPI_CTRL_CPOL. The SPI_CTRL_CPHA bit defines the clock phase
and the SPI_CTRL_CPOL bit defines the clock polarity.

Figure 7. SPI clock modes; image from https://en.wikipedia.org/wiki/File:SPI_timing_diagram2.svg (license:
(Wikimedia) Creative Commons Attribution-Share Alike 3.0 Unported)

Table 15. SPI standard clock modes

The NEORV32 RISC-V Processor Visit on GitHub

89 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://en.wikipedia.org/wiki/File:SPI_timing_diagram2.svg
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://github.com/stnolting/neorv32

Mode 0 Mode 1 Mode 2 Mode 4

SPI_CTRL_CPOL 0 0 1 1

SPI_CTRL_CPHA 0 1 0 1

The SPI clock frequency (spi_sck_o) is programmed by the 3-bit SPI_CTRL_PRSCx clock prescaler.
The following prescalers are available:

Table 16. SPI prescaler configuration

SPI_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Based on the SPI_CTRL_PRSCx configuration, the actual SPI clock frequency fSPI is derived from the
processor’s main clock fmain and is determined by:

fSPI = fmain[Hz] / (2 * clock_prescaler)

Hence, the maximum SPI clock is fmain / 4.

High-Speed SPI mode

The module provides a "high-speed" SPI mode. In this mode the clock prescaler
configuration (SPI_CTRL_PRSCx) is ignored and the SPI clock operates at fmain / 2
(half of the processor’s main clock). High speed SPI mode is enabled by setting the
control register’s SPI_CTRL_HIGHSPEED bit.

SPI Interrupt

The SPI module provides a single interrupt to signal "transmission done" to the CPU. Whenever the
SPI module completes the current transfer operation, the interrupt is triggered and has to be
explicitly cleared again by writing zero to the according mip CSR bit.

Table 17. SPI register map (struct NEORV32_SPI)

The NEORV32 Processor Visit on GitHub

90 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xffffffa8 NEORV32_SP
I.CTRL

0 SPI_CTRL_CS0 r/w Direct chip-select 0..7; setting spi_csn_o(x)
low when set1 SPI_CTRL_CS1 r/w

2 SPI_CTRL_CS2 r/w

3 SPI_CTRL_CS3 r/w

4 SPI_CTRL_CS4 r/w

5 SPI_CTRL_CS5 r/w

6 SPI_CTRL_CS6 r/w

7 SPI_CTRL_CS7 r/w

8 SPI_CTRL_EN r/w SPI enable

9 SPI_CTRL_CPHA r/w clock phase (0=sample RX on rising edge &
update TX on falling edge; 1=sample RX on
falling edge & update TX on rising edge)

10 SPI_CTRL_PRSC0 r/w 3-bit clock prescaler select

11 SPI_CTRL_PRSC1 r/w

12 SPI_CTRL_PRSC2 r/w

13 SPI_CTRL_SIZE0 r/w transfer size (00=8-bit, 01=16-bit, 10=24-bit,
11=32-bit)14 SPI_CTRL_SIZE1 r/w

15 SPI_CTRL_CPOL r/w clock polarity

16
SPI_CTRL_HIGHSPEED

r/w enable SPI high-speed mode (ignoring
SPI_CTRL_PRSC)

17:30 r/- _reserved, read as zero

31 SPI_CTRL_BUSY r/- transmission in progress when set

0xffffffac NEORV32_SP
I.DATA

31:0 r/w receive/transmit data, LSB-aligned

The NEORV32 RISC-V Processor Visit on GitHub

91 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.14. Two-Wire Serial Interface Controller (TWI)

Hardware source file(s): neorv32_twi.vhd

Software driver file(s): neorv32_twi.c

neorv32_twi.h

Top entity port: twi_sda_io 1-bit bi-directional serial data

twi_scl_io 1-bit bi-directional serial clock

Configuration generics: IO_TWI_EN implement TWI controller when true

CPU interrupts: fast IRQ channel 7 transmission done interrupt (see
Processor Interrupts)

Theory of Operation

The two wire interface - also called "I²C" - is a quite famous interface for connecting several on-
board components. Since this interface only needs two signals (the serial data line twi_sda_io and
the serial clock line twi_scl_io) - despite of the number of connected devices - it allows easy
interconnections of several peripheral nodes.

The NEORV32 TWI implements a TWI controller. It supports "clock so a slow peripheral can halt
the transmission by pulling the SCL line low. Currently, no multi-controller support is available.
Also, the NEORV32 TWI unit cannot operate in peripheral mode.

The TWI is enabled via the TWI_CTRL_EN bit in the CTRL control register. The user program can
start / stop a transmission by issuing a START or STOP condition. These conditions are generated by
setting the according bits (TWI_CTRL_START or TWI_CTRL_STOP) in the control register.

Data is send by writing a byte to the DATA register. Received data can also be read from this register.
The TWI controller is busy (transmitting data or performing a START or STOP condition) as long as
the TWI_CTRL_BUSY bit in the control register is set.

An accessed peripheral has to acknowledge each transferred byte. When the TWI_CTRL_ACK bit is
set after a completed transmission, the accessed peripheral has send an acknowledge. If it is cleared
after a transmission, the peripheral has send a not-acknowledge (NACK). The NEORV32 TWI
controller can also send an ACK by itself ("controller acknowledge MACK") after a transmission by
pulling SDA low during the ACK time slot. Set the TWI_CTRL_MACK bit to activate this feature. If
this bit is cleared, the ACK/NACK of the peripheral is sampled in this time slot instead (normal
mode).

In summary, the following independent TWI operations can be triggered by the application
program:

• send START condition (also as REPEATED START condition)

• send STOP condition

• send (at least) one byte while also sampling one byte from the bus

The NEORV32 Processor Visit on GitHub

92 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

A transmission can be terminated at any time by disabling the TWI module by
clearing the TWI_CTRL_EN control register bit.

The serial clock (SCL) and the serial data (SDA) lines can only be actively driven
low by the controller. Hence, external pull-up resistors are required for these lines.

The TWI clock frequency is defined via the 3-bit TWI_CTRL_PRSCx clock prescaler. The following
prescalers are available:

Table 18. TWI prescaler configuration

TWI_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Based on the TWI_CTRL_PRSCx configuration, the actual TWI clock frequency fSCL is derived from
the processor main clock fmain and is determined by:

fSCL = fmain[Hz] / (4 * clock_prescaler)

TWI Interrupt

The SPI module provides a single interrupt to signal "operation done" to the CPU. Whenever the
TWI module completes the current operation (generate stop condition, generate start conditions or
transfer byte), the interrupt is triggered. Once triggered, the interrupt has to be explicitly cleared
again by writing zero to the according mip CSR bit.

Table 19. TWI register map (struct NEORV32_TWI)

Address Name [C] Bit(s), Name [C] R/W Function

0xffffffb0 NEORV32_TW
I.CTRL

0 TWI_CTRL_EN r/w TWI enable

1 TWI_CTRL_START r/w generate START condition

2 TWI_CTRL_STOP r/w generate STOP condition

3 TWI_CTRL_PRSC0 r/w 3-bit clock prescaler select

4 TWI_CTRL_PRSC1 r/w

5 TWI_CTRL_PRSC2 r/w

6 TWI_CTRL_MACK r/w generate controller ACK for each
transmission ("MACK")

30 TWI_CTRL_ACK r/- ACK received when set

31 TWI_CTRL_BUSY r/- transfer/START/STOP in progress when set

0xffffffb4 NEORV32_TW
I.DATA

7:0 TWI_DATA_MSB :
TWI_DATA_LSB_

r/w receive/transmit data

The NEORV32 RISC-V Processor Visit on GitHub

93 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.15. Pulse-Width Modulation Controller (PWM)

Hardware source file(s): neorv32_pwm.vhd

Software driver file(s): neorv32_pwm.c

neorv32_pwm.h

Top entity port: pwm_o up to 60 PWM output channels (60-bit,
fixed)

Configuration generics: IO_PWM_NUM_CH number of PWM channels to
implement (0..60)

CPU interrupts: none

The PWM controller implements a pulse-width modulation controller with up to 60 independent
channels and 8- bit resolution per channel. The actual number of implemented channels is defined
by the IO_PWM_NUM_CH generic. Setting this generic to zero will completely remove the PWM
controller from the design.

The pwm_o has a static size of 60-bit. Is less than 60 PWM channels are configured,
only the LSB-aligned channels (bits) are used while the remaining bits are
hardwired to zero.

The PWM controller is based on an 8-bit base counter with a programmable threshold comparators
for each channel that defines the actual duty cycle. The controller can be used to drive fancy RGB-
LEDs with 24- bit true color, to dim LCD back-lights or even for "analog" control. An external
integrator (RC low-pass filter) can be used to smooth the generated "analog" signals.

Theory of Operation

The PWM controller is activated by setting the PWM_CTRL_EN bit in the module’s control register
CTRL. When this bit is cleared, the unit is reset and all PWM output channels are set to zero. The 8-
bit duty cycle for each channel, which represents the channel’s "intensity", is defined via an 8-bit
value. The module provides up to 15 duty cycle registers DUTY[0] to DUTY[14] (depending on the
number of implemented channels). Each register contains the duty cycle configuration for 4
consecutive channels. For example, the duty cycle of channel 0 is defined via bits 7:0 in DUTY[0]. The
duty cycle of channel 2 is defined via bits 15:0 in DUTY[0]. Channel 4’s duty cycle is defined via bits
7:0 in DUTY[1] and so on.

Regardless of the configuration of IO_PWM_NUM_CH all module registers can be
accessed without raising an exception. Software can discover the number of
available channels by writing 0xff to all duty cycle configuration bytes and reading
those values back. The duty-cycle of channels that were not implemented always
reads as zero.

Based on the configured duty cycle the according intensity of the channel can be computed by the
following formula:

The NEORV32 Processor Visit on GitHub

94 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Intensityx = DUTY[y](i*8+7 downto i*8) / (28)

The base frequency of the generated PWM signals is defined by the PWM core clock. This clock is
derived from the main processor clock and divided by a prescaler via the 3-bit PWM_CTRL_PRSCx
in the unit’s control register. The following pre-scalers are available:

Table 20. PWM prescaler configuration

PWM_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

The resulting PWM base frequency is defined by:

fPWM = fmain[Hz] / (28 * clock_prescaler)

The NEORV32 RISC-V Processor Visit on GitHub

95 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Table 21. PWM register map (struct neorv32_pwm_t)

Address Name [C] Bit(s), Name [C] R/W Function

0xfffffe80 NEORV32_PWM.CT
RL

0 PWM_CTRL_EN r/w PWM enable

1 PWM_CTRL_PRSC0 r/w 3-bit clock prescaler select

2 PWM_CTRL_PRSC1 r/w

3 PWM_CTRL_PRSC2 r/w

0xfffffe84 NEORV32_PWM.DU
TY[0]

7:0 r/w 8-bit duty cycle for channel 0

15:8 r/w 8-bit duty cycle for channel 1

23:16 r/w 8-bit duty cycle for channel 2

31:24 r/w 8-bit duty cycle for channel 3

… … … r/w …

0xfffffebc NEORV32_PWM.DU
TY[14]

7:0 r/w 8-bit duty cycle for channel 56

15:8 r/w 8-bit duty cycle for channel 57

23:16 r/w 8-bit duty cycle for channel 58

31:24 r/w 8-bit duty cycle for channel 59

The NEORV32 Processor Visit on GitHub

96 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.16. True Random-Number Generator (TRNG)

Hardware source file(s): neorv32_trng.vhd

Software driver file(s): neorv32_trng.c

neorv32_trng.h

Top entity port: none

Configuration generics: IO_TRNG_EN implement TRNG when true

IO_TRNG_FIFO data FIFO depth, min 1, has to be a
power of two

CPU interrupts: none

Theory of Operation

The NEORV32 true random number generator provides physical true random numbers. Instead of
using a pseudo RNG like a LFSR, the TRNG uses a simple, straight-forward ring oscillator concept as
physical entropy source. Hence, voltage, thermal and also semiconductor manufacturing
fluctuations are used to provide a true physical entropy source.

The TRNG features a platform independent architecture without FPGA-specific primitives, macros
or attributes so it can be synthesized for any FPGA.

The TRNG is based on the neoTRNG V2, which is a "spin-off project" of the NEORV32 processor.
More detailed information about the neoTRNG, it’s architecture and a detailed evaluation of the
random number quality can be found it it’s repository: https://github.com/stnolting/neoTRNG

Inferring Latches

The synthesis tool might emit a warning like "inferring latches for … neorv32_trng
…". This is no problem as this is what we actually want: the TRNG is based on
latches, which implement the inverters of the ring oscillators.

Simulation

When simulating the processor the TRNG is automatically set to "simulation
mode". In this mode, the physical entropy sources (= the ring oscillators) are
replaced by a simple pseudo RNG (LFSR) providing very weak random data only.
The TRNG_CTRL_SIM_MODE flag of the control register is set if simulation mode is
active.

Using the TRNG

The TRNG features a single register for status and data access. When the TRNG_CTRL_EN control
register (CTRL) bit is set, the TRNG is enabled and starts operation. As soon as the TRNG_CTRL_VALID
bit is set a random data byte is available and can be obtained from the lowest 8 bits of the CTRL
register (TRNG_CTRL_DATA_MSB : TRNG_CTRL_DATA_LSB).

The NEORV32 RISC-V Processor Visit on GitHub

97 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neoTRNG
https://github.com/stnolting/neorv32

An optional random data FIFO can be configured using the IO_TRNG_FIFO generic. This FIFO
automatically samples new random data from the TRNG to provide some kind of random data pool
for applications, which require a large number of RND data in a short time. The minimal and
default value for IO_TRNG_FIFO is 1 (implementing a register rather than a real FIFO); the generic
has to be a power of two.

The random data FIFO can be cleared at any time either by disabling the TRNG via the
TRNG_CTRL_EN flag or by setting the TRNG_CTRL_FIFO_CLR flag. Note that this falg is write-only
and auto clears after being set.

TRNG Reset

The TRNG core does not provide a dedicated reset. In order to ensure correct
operations, the TRNG should be disabled (=reset) by clearing the TRNG_CTRL_EN
and waiting some 1000s clock cycles before re-enabling it.

Table 22. TRNG register map (struct NEORV32_TRNG)

Address Name [C] Bit(s), Name [C] R/W Function

0xffffffb8 NEORV32_TR
NG.CTRL

7:0
TRNG_CTRL_DATA_MSB
:
TRNG_CTRL_DATA_MSB

r/- 8-bit random data

28
TRNG_CTRL_FIFO_CLR

-/w clear data FIFO when set (auto clears)

29
TRNG_CTRL_SIM_MOD
E

r/- simulation mode (PRNG!)

30 TRNG_CTRL_EN r/w TRNG enable

31 TRNG_CTRL_VALID r/- random data is valid when set

The NEORV32 Processor Visit on GitHub

98 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.17. Custom Functions Subsystem (CFS)

Hardware source file(s): neorv32_gfs.vhd

Software driver file(s): neorv32_gfs.c

neorv32_gfs.h

Top entity port: cfs_in_i custom input conduit

cfs_out_o custom output conduit

Configuration generics: IO_CFS_EN implement CFS when true

IO_CFS_CONFIG custom generic conduit

IO_CFS_IN_SIZE size of cfs_in_i

IO_CFS_OUT_SIZE size of cfs_out_o

CPU interrupts: fast IRQ channel 1 CFS interrupt (see Processor
Interrupts)

Theory of Operation

The custom functions subsystem is meant for implementing custom and application-specific logic.
The CFS provides up to 32x 32-bit memory-mapped read/write registers (REG, see register map
below) that can be accessed by the CPU via normal load/store operations. The actual functionality of
these register has to be defined by the hardware designer. Furthermore, the CFS provides two IO
conduits to implement custom on-chip or off-chip interfaces.

In contrast to connecting custom hardware accelerators via external memory interfaces (like SPI or
the processor’s external bus interface), the CFS provide a convenient, low-latency and tightly-
coupled extension and customization option.

Just like any other externally-connected IP, logic implemented within the custom functions
subsystem can operate independently of the CPU providing true parallel processing capabilities.
Potential use cases might include dedicated hardware accelerators for en-/decryption (AES), signal
processing (FFT) or AI applications (CNNs) as well as custom IO systems like fast memory interfaces
(DDR) and mass storage (SDIO), networking (CAN) or real-time data transport (I2S).

If you like to implement custom instructions that are executed right within the
CPU’s ALU see the Zxcfu Custom Instructions Extension (CFU) and the according
Custom Functions Unit (CFU).

Take a look at the template CFS VHDL source file (rtl/core/neorv32_cfs.vhd). The
file is highly commented to illustrate all aspects that are relevant for implementing
custom CFS-based co-processor designs.

CFS Software Access

The CFS memory-mapped registers can be accessed by software using the provided C-language

The NEORV32 RISC-V Processor Visit on GitHub

99 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

aliases (see register map table below). Note that all interface registers are declared as 32-bit words
of type uint32_t.

Listing 2. CFS Software Access Example

// C-code CFS usage example
NEORV32_CFS.REG[0] = (uint32_t)some_data_array(i); // write to CFS register 0
int temp = (int)NEORV32_CFS.REG[20]; // read from CFS register 20

A very simple example program that uses the default CFS hardware module can be
found in sw/example/cfs_demo.

CFS Interrupt

The CFS provides a single high-level-triggered interrupt request signal mapped to the CPU’s fast
interrupt channel 1. Once triggered, the interrupt becomes pending (if enabled in the mis CSR) and
has to be explicitly cleared again by writing zero to the according mip CSR bit. See section Processor
Interrupts for more information.

CFS Configuration Generic

By default, the CFS provides a single 32-bit std_(u)logic_vector configuration generic
IO_CFS_CONFIG that is available in the processor’s top entity. This generic can be used to pass
custom configuration options from the top entity directly down to the CFS. The actual definition of
the generic and it’s usage inside the CFS is left to the hardware designer.

CFS Custom IOs

By default, the CFS also provides two unidirectional input and output conduits cfs_in_i and
cfs_out_o. These signals are directly propagated to the processor’s top entity. These conduits can be
used to implement application-specific interfaces like memory or peripheral connections. The
actual use case of these signals has to be defined by the hardware designer.

The size of the input signal conduit cfs_in_i is defined via the top’s IO_CFS_IN_SIZE configuration
generic (default = 32-bit). The size of the output signal conduit cfs_out_o is defined via the top’s
IO_CFS_OUT_SIZE configuration generic (default = 32-bit). If the custom function subsystem is not
implemented (IO_CFS_EN = false) the cfs_out_o signal is tied to all-zero.

Table 23. CFS register map (struct NEORV32_CFS)

Address Name [C] Bit(s) R/W Function

0xfffffe00 NEORV32_CFS.REG[
0]

31:0 (r)/(w) custom CFS interface register 0

0xfffffe04 NEORV32_CFS.REG[
1]

31:0 (r)/(w) custom CFS interface register 1

… … 31:0 (r)/(w) …

The NEORV32 Processor Visit on GitHub

100 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xfffffe78 NEORV32_CFS.REG[
30]

31:0 (r)/(w) custom CFS interface register 30

0xfffffe7c NEORV32_CFS.REG[
31]

31:0 (r)/(w) custom CFS interface register 31

The NEORV32 RISC-V Processor Visit on GitHub

101 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

2.5.18. Smart LED Interface (NEOLED)

Hardware source file(s): neorv32_neoled.vhd

Software driver file(s): neorv32_neoled.c

neorv32_neoled.h

Top entity port: neoled_o 1-bit serial data output

Configuration generics: IO_NEOLED_EN implement NEOLED when true

IO_NEOLED_TX_FIFO TX FIFO depth (1..32k, has to be a
power of two)

CPU interrupts: fast IRQ channel 9 NEOLED interrupt (see Processor
Interrupts)

Theory of Operation

The NEOLED module provides a dedicated interface for "smart RGB LEDs" like the WS2812 or
WS2811. These LEDs provide a single interface wire that uses an asynchronous serial protocol for
transmitting color data. Basically, data is transferred via LED-internal shift registers, which allows
to cascade an unlimited number of smart LEDs. The protocol provides a RESET command to strobe
the transmitted data into the LED PWM driver registers after data has shifted throughout all LEDs
in a chain.

The NEOLED interface is compatible to the "Adafruit Industries NeoPixel"
products, which feature WS2812 (or older WS2811) smart LEDs (see
link:https://learn.adafruit.com/adafruit-neopixel-uberguide).

The interface provides a single 1-bit output neoled_o to drive an arbitrary number of cascaded
LEDs. Since the NEOLED module provides 24-bit and 32-bit operating modes, a mixed setup with
RGB LEDs (24-bit color) and RGBW LEDs (32-bit color including a dedicated white LED chip) is
possible.

Theory of Operation - NEOLED Module

The NEOLED modules provides two accessible interface registers: the control register CTRL and the
TX data register DATA. The NEOLED module is globally enabled via the control register’s
NEOLED_CTRL_EN bit. Clearing this bit will terminate any current operation, clear the TX buffer,
reset the module and set the neoled_o output to zero. The precise timing (implementing the WS2812
protocol) and transmission mode are fully programmable via the CTRL register to provide maximum
flexibility.

RGB / RGBW Configuration

NeoPixel are available in two "color" version: LEDs with three chips providing RGB color and LEDs
with four chips providing RGB color plus a dedicated white LED chip (= RGBW). Since the intensity
of every LED chip is defined via an 8-bit value the RGB LEDs require a frame of 24-bit per module
and the RGBW LEDs require a frame of 32-bit per module.

The NEORV32 Processor Visit on GitHub

102 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The data transfer quantity of the NEOLED module can be configured via the NEOLED_MODE_EN
control register bit. If this bit is cleared, the NEOLED interface operates in 24-bit mode and will
transmit bits 23:0 of the data written to DATA to the LEDs. If NEOLED_MODE_EN is set, the NEOLED
interface operates in 32-bit mode and will transmit bits 31:0 of the data written to DATA to the LEDs.

The mode bit can be configured before writing each new data word in order to support an arbitrary
setup of RGB and RGBW LEDs.

Theory of Operation - Protocol

The interface of the WS2812 LEDs uses an 800kHz carrier signal. Data is transmitted in a serial
manner starting with LSB-first. The intensity for each R, G & B (& W) LED chip (= color code) is
defined via an 8-bit value. The actual data bits are transferred by modifying the duty cycle of the
signal (the timings for the WS2812 are shown below). A RESET command is "send" by pulling the
data line LOW for at least 50μs.

Figure 8. WS2812 bit-level protocol - taken from the "Adafruit NeoPixel Überguide"

Table 24. WS2812 interface timing

Ttotal (Tcarrier) 1.25μs +/- 300ns period for a single bit

T0H 0.4μs +/- 150ns high-time for sending a 1

T0L 0.8μs +/- 150ns low-time for sending a 1

T1H 0.85μs +/- 150ns high-time for sending a 0

T1L 0.45μs +/- 150 ns low-time for sending a 0

RESET Above 50μs low-time for sending a RESET command

Timing Configuration

The basic carrier frequency (800kHz for the WS2812 LEDs) is configured via a 3-bit main clock
prescaler (NEOLED_CTRL_PRSCx, see table below) that scales the main processor clock fmain and a 5-
bit cycle multiplier NEOLED_CTRL_T_TOT_x.

Table 25. NEOLED prescaler configuration

NEOLED_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

The NEORV32 RISC-V Processor Visit on GitHub

103 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

The duty-cycles (or more precisely: the high- and low-times for sending either a '1' bit or a '0' bit)
are defined via the 5-bit NEOLED_CTRL_T_ONE_H_x and NEOLED_CTRL_T_ZERO_H_x values,
respectively. These programmable timing constants allow to adapt the interface for a wide variety
of smart LED protocol (for example WS2812 vs. WS2811).

Timing Configuration - Example (WS2812)

Generate the base clock fTX for the NEOLED TX engine:

• processor clock fmain = 100 MHz

• NEOLED_CTRL_PRSCx = 0b001 = fmain / 4

fTX = fmain[Hz] / clock_prescaler = 100MHz / 4 = 25MHz

TTX = 1 / fTX = 40ns

Generate carrier period (Tcarrier) and high-times (duty cycle) for sending 0 (T0H) and 1 (T1H) bits:

• NEOLED_CTRL_T_TOT = 0b11110 (= decimal 30)

• NEOLED_CTRL_T_ZERO_H = 0b01010 (= decimal 10)

• NEOLED_CTRL_T_ONE_H = 0b10100 (= decimal 20)

Tcarrier = TTX * NEOLED_CTRL_T_TOT = 40ns * 30 = 1.4µs

T0H = TTX * NEOLED_CTRL_T_ZERO_H = 40ns * 10 = 0.4µs

T1H = TTX * NEOLED_CTRL_T_ONE_H = 40ns * 20 = 0.8µs

The NEOLED SW driver library (neorv32_neoled.h) provides a simplified
configuration function that configures all timing parameters for driving WS2812
LEDs based on the processor clock frequency.

TX Data FIFO

The interface features a TX data buffer (a FIFO) to allow more CPU-independent operation. The
buffer depth is configured via the IO_NEOLED_TX_FIFO top generic (default = 1 entry). The FIFO
size configuration can be read via the NEOLED_CTRL_BUFS_x control register bits, which result
log2(IO_NEOLED_TX_FIFO).

When writing data to the DATA register the data is automatically written to the TX buffer. Whenever
data is available in the buffer the serial transmission engine will take it and transmit it to the LEDs.
The data transfer size (NEOLED_MODE_EN) can be modified at every time since this control register
bit is also buffered in the FIFO. This allows to arbitrarily mixing RGB and RGBW LEDs in the chain.

Software can check the FIFO fill level via the control register’s NEOLED_CTRL_TX_EMPTY,
NEOLED_CTRL_TX_HALF and NEOLED_CTRL_TX_FULL flags. The NEOLED_CTRL_TX_BUSY flags
provides additional information if the the TX unit is still busy sending data.

The NEORV32 Processor Visit on GitHub

104 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Please note that the timing configurations (NEOLED_CTRL_PRSCx,
NEOLED_CTRL_T_TOT_x, NEOLED_CTRL_T_ONE_H_x and
NEOLED_CTRL_T_ZERO_H_x) are NOT stored to the buffer. Changing these value
while the buffer is not empty or the TX engine is still busy will cause data
corruption.

• Strobe Command ("RESET") **

According to the WS2812 specs the data written to the LED’s shift registers is strobed to the actual
PWM driver registers when the data line is low for 50μs ("RESET" command, see table above). This
can be implemented using busy-wait for at least 50μs. Obviously, this concept wastes a lot of
processing power.

To circumvent this, the NEOLED module provides an option to automatically issue an idle time for
creating the RESET command. If the NEOLED_CTRL_STROBE control register bit is set, all data
written to the data FIFO (via DATA, the actually written data is irrelevant) will trigger an idle phase
(neoled_o = zero) of 127 periods (= Tcarrier). This idle time will cause the LEDs to strobe the color data
into the PWM driver registers.

Since the NEOLED_CTRL_STROBE flag is also buffered in the TX buffer, the RESET command is
treated just as another data word being written to the TX buffer making busy wait concepts
obsolete and allowing maximum refresh rates.

NEOLED Interrupt

The NEOLED modules features a single interrupt that becomes pending based on the current TX
buffer fill level. The interrupt can only become pending if the NEOLED module is enabled. The
specific interrupt condition is configured via the NEOLED_CTRL_IRQ_CONF bit in the unit’s control
register.

If NEOLED_CTRL_IRQ_CONF is cleared, an interrupt is generated whenever the TX FIFO becomes
less than half-full. In this case software can write up to IO_NEOLED_TX_FIFO/2 new data words to
DATA without checking the FIFO status flags. If NEOLED_CTRL_IRQ_CONF is set, an interrupt is
generated whenever the TX FIFO becomes empty.

One the NEOLED interrupt has been triggered and became pending, it has to explicitly cleared
again by writing zero to according mip CSR bit.

The NEOLED_CTRL_IRQ_CONF is hardwired to one if IO_NEOLED_TX_FIFO = 1 (→
IRQ if FIFO is empty). If the FIFO is configured to contain only a single entry
(IO_NEOLED_TX_FIFO = 1) the interrupt will become pending if the FIFO (which is
just a single register providing simple double-buffering) is empty.

The NEORV32 RISC-V Processor Visit on GitHub

105 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Table 26. NEOLED register map (struct NEORV32_NEOLED)

The NEORV32 Processor Visit on GitHub

106 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xffffffd8

The NEORV32 RISC-V Processor Visit on GitHub

107 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

NEORV32_NEOLED.
CTRL

0 NEOLED_CTRL_EN r/w NEOLED enable

1 NEOLED_CTRL_MODE r/w data transfer size; 0=24-bit;
1=32-bit

2 NEOLED_CTRL_STROBE r/w 0=send normal color data;
1=send RESET command on
data write access

3 NEOLED_CTRL_PRSC0 r/w 3-bit clock prescaler, bit 0

4 NEOLED_CTRL_PRSC1 r/w 3-bit clock prescaler, bit 1

5 NEOLED_CTRL_PRSC2 r/w 3-bit clock prescaler, bit 2

6 NEOLED_CTRL_BUFS0 r/- 4-bit
log2(IO_NEOLED_TX_FIFO)7 NEOLED_CTRL_BUFS1 r/-

8 NEOLED_CTRL_BUFS2 r/-

9 NEOLED_CTRL_BUFS3 r/-

10 NEOLED_CTRL_T_TOT_0 r/w 5-bit pulse clock ticks per
total single-bit period (Ttotal)11 NEOLED_CTRL_T_TOT_1 r/w

12 NEOLED_CTRL_T_TOT_2 r/w

13 NEOLED_CTRL_T_TOT_3 r/w

14 NEOLED_CTRL_T_TOT_4 r/w

15
NEOLED_CTRL_T_ZERO_H_0

r/w 5-bit pulse clock ticks per
high-time for sending a zero-
bit (T0H)16

NEOLED_CTRL_T_ZERO_H_1
r/w

17
NEOLED_CTRL_T_ZERO_H_2

r/w

18
NEOLED_CTRL_T_ZERO_H_3

r/w

19
NEOLED_CTRL_T_ZERO_H_4

r/w

20 NEOLED_CTRL_T_ONE_H_0 r/w 5-bit pulse clock ticks per
high-time for sending a one-
bit (T1H)

21 NEOLED_CTRL_T_ONE_H_1 r/w

22 NEOLED_CTRL_T_ONE_H_2 r/w

23 NEOLED_CTRL_T_ONE_H_3 r/w

24 NEOLED_CTRL_T_ONE_H_4 r/w

27 NEOLED_CTRL_IRQ_CONF r/w TX FIFO interrupt
configuration: 0=IRQ if FIFO
is less than half-full, 1=IRQ if
FIFO is empty

28 NEOLED_CTRL_TX_EMPTY r/- TX FIFO is empty

29 NEOLED_CTRL_TX_HALF r/- TX FIFO is at least half full

30 NEOLED_CTRL_TX_FULL r/- TX FIFO is full

31 NEOLED_CTRL_TX_BUSY r/- TX serial engine is busy when
set

0xffffffdc NEORV32_NEOLED.
DATA

31:0 / 23:0 -/w TX data (32-/24-bit)

The NEORV32 Processor Visit on GitHub

108 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.19. External Interrupt Controller (XIRQ)

Hardware source file(s): neorv32_xirq.vhd

Software driver file(s): neorv32_xirq.c

neorv32_xirq.h

Top entity port: xirq_i IRQ input (32-bit, fixed)

Configuration generics: XIRQ_NUM_CH Number of IRQs to implement (0..32)

XIRQ_TRIGGER_TYPE IRQ trigger type configuration

XIRQ_TRIGGER_POLARITY IRQ trigger polarity configuration

CPU interrupts: fast IRQ channel 8 XIRQ (see Processor Interrupts)

The eXternal interrupt controller provides a simple mechanism to implement up to 32 processor-
external interrupt request signals. The external IRQ requests are prioritized, queued and signaled
to the CPU via a single CPU fast interrupt request.

Theory of Operation

The XIRQ provides up to 32 interrupt channels (configured via the XIRQ_NUM_CH generic). Each bit
in the xirq_i input signal vector represents one interrupt channel. If less than 32 channels are
configure, only the LSB-aligned channels are used while the remaining bits are left unconnected.
An interrupt channel is enabled by setting the according bit in the interrupt enable register IER.

If the configured trigger (see below) of an enabled channel fires, the request is stored into an
internal buffer. This buffer is available via the interrupt pending register IPR. A 1 in this register
indicates that the corresponding interrupt channel has fired but has not yet been serviced (so it is
pending). An interrupt channel can become pending if the according IER bit is set. Pending IRQs can
be cleared by writing 0 to the according IPR bit. As soon as there is a least one pending interrupt in
the buffer, an interrupt request is send to the CPU.

A disabled interrupt channel can still be pending if it has been triggered before
clearing the according IER bit.

The CPU can determine active external interrupt request either by checking the bits in the IPR
register, which show all pending interrupt channels, or by reading the interrupt source register SCR.
This register provides a 5-bit wide ID (0..31) that shows the interrupt request with highest priority.
Interrupt channel xirq_i(0) has highest priority and xirq_i(XIRQ_NUM_CH-1) has lowest priority. This
priority assignment is fixed and cannot be altered by software. The CPU can use the ID from SCR to
service IRQ according to their priority. To acknowledge the according interrupt the CPU can write 1
<< SCR to IPR.

In order to clear a pending FIRQ interrupt from the external interrupt controller again, the
according mip CSR bit has to be cleared. Additionally, the XIRQ interrupt has to be acknowledged by
writing any value to the interrupt source register SRC.

The NEORV32 RISC-V Processor Visit on GitHub

109 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

An interrupt handler should clear the interrupt pending bit that caused the
interrupt first before acknowledging the interrupt by writing the SCR register.

IRQ Trigger Configuration

The controller does not provide a configuration option to define the IRQ triggers during runtime.
Instead, two generics are provided to configure the trigger of each interrupt channel before
synthesis: the XIRQ_TRIGGER_TYPE and XIRQ_TRIGGER_POLARITY generic. Both generics are 32 bit
wide representing one bit per interrupt channel. If less than 32 interrupt channels are
implemented the remaining configuration bits are ignored.

XIRQ_TRIGGER_TYPE is used to define the general trigger type. This can be either level-triggered (0)
or edge-triggered (1). XIRQ_TRIGGER_POLARITY is used to configure the polarity of the trigger: a 0
defines low-level or falling-edge and a 1 defines high-level or rising-edge.

Listing 3. Example trigger configuration: channel 0 for rising-edge, IRQ channels 1 to 31 for high-level

XIRQ_TRIGGER_TYPE => x"00000001";
XIRQ_TRIGGER_POLARITY => x"ffffffff";

Table 27. XIRQ register map (struct NEORV32_XIRQ)

Address Name [C] Bit(s) R/W Function

0xffffff80 NEORV32_XIRQ.IER 31:0 r/w Interrupt enable register (one bit per channel,
LSB-aligned)

0xffffff84 NEORV32_XIRQ.IPR 31:0 r/w Interrupt pending register (one bit per channel,
LSB-aligned); writing 0 to a bit clears according
pending interrupt

0xffffff88 NEORV32_XIRQ.SCR 4:0 r/w Channel id (0..31) of firing IRQ (prioritized!);
writing any value will acknowledge the current
interrupt

0xffffff8c - 31:0 r/- reserved, read as zero

The NEORV32 Processor Visit on GitHub

110 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.20. General Purpose Timer (GPTMR)

Hardware source file(s): neorv32_gptmr.vhd

Software driver file(s): neorv32_gptmr.c

neorv32_gptmr.h

Top entity port: none

Configuration generics: IO_GPTMR_EN implement general purpose timer
when true

CPU interrupts: fast IRQ channel 12 transmission done interrupt (see
Processor Interrupts)

Theory of Operation

The general purpose timer module provides a simple yet universal 32-bit timer. The timer is
implemented if IO_GPTMR_EN top generic is set true. It provides a 32-bit counter register (COUNT)
and a 32-bit threshold register (THRES). An interrupt is generated whenever the value of the counter
registers matches the one from threshold register.

The timer is enabled by setting the GPTMR_CTRL_EN bit in the device’s control register CTRL. The
COUNT register will start incrementing at a programmable rate, which scales the main processor
clock. The pre-scaler value is configured via the three GPTMR_CTRL_PRSCx control register bits:

Table 28. GPTMR prescaler configuration

GPTMR_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

The timer provides two operation modes that are configured by the GPTMR_CTRL_MODE control
register bit: if GPTMR_CTRL_MODE is cleared (0) the timer operates in single-shot mode. As soon as
COUNT matches THRES an interrupt request is generated and the timer stops operation (i.e. it stops
incrementing). If GPTMR_CTRL_MODE is set (1) the timer operates in continuous mode. When COUNT
matches THRES an interrupt request is generated and COUNT is automatically reset to all-zero before
continuing to increment.

Disabling the timer will not clear the COUNT register. However, it can be manually
reset at any time by writing zero to it.

Timer Interrupt

The timer interrupt is triggered when the timer is enabled and COUNT matches THRES. The interrupt
remains pending until explicitly cleared by writing zero to the according mip CSR bit.

Table 29. GPTMR register map (struct NEORV32_GPTMR)

The NEORV32 RISC-V Processor Visit on GitHub

111 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xffffff60 NEORV32_GP
TMR.CTRL

0 GPTMR_CTRL_EN r/w Timer enable flag

1 GPTMR_CTRL_PRSC0 r/w 3-bit clock prescaler select

2 GPTMR_CTRL_PRSC1 r/w

3 GPTMR_CTRL_PRSC2 r/w

4 GPTMR_CTRL_MODE r/w Counter mode: 0=single-shot,
1=continuous

0xffffff64 NEORV32_GP
TMR.THRES

31:0 r/w Threshold value register

0xffffff68 NEORV32_GP
TMR.COUNT

31:0 r/w Counter register

The NEORV32 Processor Visit on GitHub

112 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.21. Execute In Place Module (XIP)

Hardware source file(s): neorv32_xip.vhd

Software driver file(s): neorv32_xip.c

neorv32_xip.h

Top entity port: xip_csn_o 1-bit chip select, low-active

xip_clk_o 1-bit serial clock output

xip_sdi_i 1-bit serial data input

xip_sdo_o 1-bit serial data output

Configuration generics: IO_XIP_EN implement XIP module when true

CPU interrupts: none

Overview

The execute in place (XIP) module is probably one of the more complicated modules of the
NEORV32. The module allows to execute code (and read constant data) directly from a SPI flash
memory. Hence, it uses the standard serial peripheral interface (SPI) as transfer protocol under the
hood.

The XIP flash is not mapped to a specific region of the processor’s address space. Instead, the XIP
module provides a programmable mapping scheme to allow a flexible user-defined mapping of the
flash to any section of the address space.

From the CPU side, the modules provides two different interfaces: one for transparently accessing
the XIP flash and another one for accessing the module’s control and status registers. The first
interface provides a transparent gateway to the SPI flash, so the CPU can directly fetch and execute
instructions (and/or read constant data). Note that this interface is read-only. Any write access will
raise a bus error exception. The second interface is mapped to the processor’s IO space and allows
data accesses to the XIP module’s configuration registers.

An example program for the XIP module is available in sw/example/demo_xip.

Quad-SPI (QSPI) support, which is about 4x times faster, is planned for the future. ὠ�

SPI Protocol

The XIP module accesses external flash using the standard SPI protocol. The module always sends
data MSB-first and provides all of the standard four clock modes (0..3), which are configured via the
XIP_CTRL_CPOL (clock polarity) and XIP_CTRL_CPHA (clock phase) control register bits,
respectively. The clock speed of the interface (xip_clk_o) is defined by a three-bit clock pre-scaler
configured using the XIP_CTRL_PRSCx bits:

Table 30. XIP prescaler configuration

The NEORV32 RISC-V Processor Visit on GitHub

113 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

XIP_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Based on the XIP_CTRL_PRSCx configuration the actual XIP SPI clock frequency fXIP is derived from
the processor’s main clock fmain and is determined by:

fXIP = fmain[Hz] / (2 * clock_prescaler)

Hence, the maximum XIP clock speed is fmain / 4.

High-Speed SPI mode

The module provides a "high-speed" SPI mode. In this mode the clock prescaler
configuration (XIP_CTRL_PRSCx) is ignored and the SPI clock operates at fmain / 2
(half of the processor’s main clock). High speed SPI mode is enabled by setting the
control register’s XIP_CTRL_HIGHSPEED bit.

The flash’s "read command", which initiates a read access, is defined by the XIP_CTRL_RD_CMD
control register bits. For most SPI flash memories this is 0x03 for normal SPI mode.

Direct SPI Access

The XIP module allows to initiate direct SPI transactions. This feature can be used to configure the
attached SPI flash or to perform direct read and write accesses to the flash memory. Two data
registers NEORV32_XIP.DATA_LO and NEORV32_XIP.DATA_HI are provided to send up to 64-bit of SPI data.
The NEORV32_XIP.DATA_HI register is write-only, so a total of 32-bit receive data is provided. Note that
the module handles the chip-select line (xip_csn_o) by itself so it is not possible to construct larger
consecutive transfers.

The actual data transmission size in bytes is defined by the control register’s XIP_CTRL_SPI_NBYTES
bits. Any configuration from 1 byte to 8 bytes is valid. Other value will result in unpredictable
behavior.

Since data is always transferred MSB-first, the data in DATA_HI:DATA_LO also has to be MSB-aligned.
Receive data is available in DATA_LO only - DATA_HI is write-only. Writing to DATA_HI triggers the actual
SPI transmission. The XIP_CTRL_PHY_BUSY control register flag indicates a transmission being in
progress.

The chip-select line of the XIP module (xip_csn_o) will only become asserted (enabled, pulled low) if
the XIP_CTRL_SPI_CSEN control register bit is set. If this bit is cleared, xip_csn_o is always disabled
(pulled high).

Direct SPI mode is only possible when the module is enabled (setting
XIP_CTRL_EN) but before the actual XIP mode is enabled via XIP_CTRL_XIP_EN.

The NEORV32 Processor Visit on GitHub

114 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

When the XIP mode is not enabled, the XIP module can also be used as additional
general purpose SPI controller with a transfer size of up to 64 bits per
transmission.

Address Mapping

The address mapping of the XIP flash is not fixed by design. It can be mapped to any section within
the processor’s address space. A section refers to one out of 16 naturally aligned 256MB wide
memory segments. This segment is defined by the four most significant bits of the address (31:28)
and the XIP’s segment is programmed by the four XIP_CTRL_XIP_PAGE bits in the unit’s control
register. All accesses within this page will be mapped to the XIP flash.

Care must be taken when programming the page mapping to prevent access
collisions with other modules (like internal memories or modules attached to the
external memory interface).

Example: to map the XIP flash to the address space starting at 0x20000000 write a "2" (0b0010) to the
XIP_CTRL_XIP_PAGE control register bits. Any access within 0x20000000 .. 0x2fffffff will be
forwarded to the XIP flash. Note that the SPI access address might wrap around.

Using the FPGA Bitstream Flash also for XIP

You can also use the FPGA’s bitstream SPI flash for storing XIP programs. To
prevent overriding the bitstream, a certain offset needs to be added to the
executable (which might require linker script modifications). To execute the
program stored in the SPI flash simply jump to the according base address. For
example if the executable starts at flash offset 0x8000 and the XIP flash is mapped
to the base address 0x20000000 then add the offset to the base address and use that
as jump/call destination (=0x20008000).

Using the XIP Mode

The XIP module is globally enabled by setting the XIP_CTRL_EN bit in the device’s CTRL control
register. Clearing this bit will reset the whole module and will also terminate any pending SPI
transfer.

Since there is a wide variety of SPI flash components with different sizes, the XIP module allows to
specify the address width of the flash: the number of address bytes used for addressing flash
memory content has to be configured using the control register’s XIP_CTRL_XIP_ABYTES bits. These
two bits contain the number of SPI address bytes (minus one). For example for a SPI flash with 24-
bit addresses these bits have to be set to 0b10.

The transparent XIP accesses are transformed into SPI transmissions with the following format
(starting with the MSB):

• 8-bit command: configured by the XIP_CTRL_RD_CMD control register bits ("SPI read
command")

The NEORV32 RISC-V Processor Visit on GitHub

115 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

• 8 to 32 bits address: defined by the XIP_CTRL_XIP_ABYTES control register bits ("number of
address bytes")

• 32-bit data: sending zeros and receiving the according flash word (32-bit)

Hence, the maximum XIP transmission size is 72-bit, which has to be configured via the
XIP_CTRL_SPI_NBYTES control register bits. Note that the 72-bit transmission size is only available
in XIP mode. The transmission size of the direct SPI accesses is limited to 64-bit.

There is no continuous read feature (i.e. a burst SPI transmission fetching several
data words at once) implemented yet.

When using four SPI flash address bytes, the most significant 4 bits of the address
are always hardwired to zero allowing a maximum accessible flash size of 256MB.

The XIP module always fetches a full naturally aligned 32-bit word from the SPI
flash. Any sub-word data masking or alignment will be performed by the CPU
logic.

After the SPI properties (including the amount of address bytes and the total amount of SPI transfer
bytes) and XIP address mapping are configured, the actual XIP mode can be enabled by setting the
control register’s XIP_CTRL_XIP_EN bit. This will enable the "transparent SPI access port" of the
module and thus, the transparent conversion of access requests into proper SPI flash transmissions.
Make sure XIP_CTRL_SPI_CSEN is also set so the module can actually select/enable the attached SPI
flash. No more direct SPI accesses via DATA_HI:DATA_LO are possible when the XIP mode is enabled.
However, the XIP mode can be disabled at any time.

If the XIP module is disabled (XIP_CTRL_EN = 0) any accesses to the programmed
XIP memory segment are ignored by the module and might be forwarded to the
processor’s external memory interface (if implemented) or will cause a bus
exception. If the XIP module is enabled (XIP_CTRL_EN = 1) but XIP mode is not
enabled yet (XIP_CTRL_XIP_EN = '0') any access to the programmed XIP memory
segment will raise a bus exception.

It is highly recommended to enable the Processor-Internal Instruction Cache
(iCACHE) to cover some of the SPI access latency.

Table 31. XIP register map (struct NEORV32_XIP)

The NEORV32 Processor Visit on GitHub

116 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xffffff40 NEORV32_XI
P.CTRL

0 XIP_CTRL_EN r/w XIP module enable

1 XIP_CTRL_PRSC0 r/w 3-bit SPI clock prescaler select

2 XIP_CTRL_PRSC1 r/w

3 XIP_CTRL_PRSC2 r/w

4 XIP_CTRL_CPOL r/w SPI clock polarity

5 XIP_CTRL_CPHA r/w SPI clock phase

9:6
XIP_CTRL_SPI_NBYTES_
MSB :
XIP_CTRL_SPI_NBYTES_
LSB

r/w Number of bytes in SPI transaction (1..9)

10 XIP_CTRL_XIP_EN r/w XIP mode enable

12:11
XIP_CTRL_XIP_ABYTES
_MSB :
XIP_CTRL_XIP_ABYTES
_LSB

r/w Number of address bytes for XIP flash
(minus 1)

20:13
XIP_CTRL_RD_CMD_MS
B :
XIP_CTRL_RD_CMD_LS
B

r/w Flash read command

24:21
XIP_CTRL_XIP_PAGE_M
SB :
XIP_CTRL_XIP_PAGE_L
SB

r/w XIP memory page

25 XIP_CTRL_SPI_CSEN r/w Allow SPI chip-select to be actually
asserted when set

26
XIP_CTRL_HIGHSPEED

r/w enable SPI high-speed mode (ignoring
XIP_CTRL_PRSC)

29:27 r/- reserved, read as zero

30 XIP_CTRL_PHY_BUSY r/- SPI PHY busy when set

31 XIP_CTRL_XIP_BUSY r/- XIP access in progress when set

0xffffff44 reserved 31:0 r/- reserved, read as zero

0xffffff48 NEORV32_XI
P.DATA_LO

31:0 r/w Direct SPI access - data register low

The NEORV32 RISC-V Processor Visit on GitHub

117 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xffffff4C NEORV32_XI
P.DATA_HI

31:0 -/w Direct SPI access - data register high; write
access triggers SPI transfer

The NEORV32 Processor Visit on GitHub

118 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

2.5.22. System Configuration Information Memory (SYSINFO)

Hardware source file(s): neorv32_sysinfo.vhd

Software driver file(s): neorv32.h

Top entity port: none

Configuration generics: * most of the top’s configuration
generics

CPU interrupts: none

Theory of Operation

The SYSINFO allows the application software to determine the setting of most of the processor’s top
entity generics that are related to processor/SoC configuration. All registers of this unit are read-
only.

This device is always implemented - regardless of the actual hardware configuration. The
bootloader as well as the NEORV32 software runtime environment require information from this
device (like memory layout and default clock speed) for correct operation.

Any write access to the SYSINFO module will raise a store bus error exception. The
Internal Bus Monitor (BUSKEEPER) will signal a "DEVICE ERROR" in this case.

Table 32. SYSINFO register map (struct NEORV32_SYSINFO)

Address Name [C] Function

0xffffffe0 NEORV32_SYSINFO.CLK clock speed in Hz (via top’s CLOCK_FREQUENCY
generic)

0xffffffe4 - reserved, read as zero

0xffffffe8 NEORV32_SYSINFO.SOC specific SoC configuration (see SYSINFO - SoC
Configuration)

0xffffffec NEORV32_SYSINFO.CACHE cache configuration information (see SYSINFO -
Cache Configuration)

0xfffffff0 NEORV32_SYSINFO.ISPACE_BASE instruction address space base (via package’s
ispace_base_c constant)

0xfffffff4 NEORV32_SYSINFO.IMEM_SIZE internal IMEM size in bytes (via top’s
MEM_INT_IMEM_SIZE generic)

0xfffffff8 NEORV32_SYSINFO.DSPACE_BASE data address space base (via package’s
sdspace_base_c constant)

0xfffffffc NEORV32_SYSINFO.DMEM_SIZE internal DMEM size in bytes (via top’s
MEM_INT_DMEM_SIZE generic)

The NEORV32 RISC-V Processor Visit on GitHub

119 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

SYSINFO - SoC Configuration

Table 33. SYSINFO_SOC bits

Bit Name [C] Function

0 SYSINFO_SOC_BOOTLOADER set if the processor-internal bootloader is
implemented (via top’s INT_BOOTLOADER_EN
generic)

1 SYSINFO_SOC_MEM_EXT set if the external Wishbone bus interface is
implemented (via top’s MEM_EXT_EN generic)

2 SYSINFO_SOC_MEM_INT_IMEM set if the processor-internal DMEM implemented
(via top’s MEM_INT_DMEM_EN generic)

3 SYSINFO_SOC_MEM_INT_DMEM set if the processor-internal IMEM is
implemented (via top’s MEM_INT_IMEM_EN
generic)

4 SYSINFO_SOC_MEM_EXT_ENDIAN set if external bus interface uses BIG-endian
byte-order (via top’s MEM_EXT_BIG_ENDIAN
generic)

5 SYSINFO_SOC_ICACHE set if processor-internal instruction cache is
implemented (via top’s ICACHE_EN generic)

13 SYSINFO_SOC_IS_SIM set if processor is being simulated (⚠️ not
guaranteed)

14 SYSINFO_SOC_OCD set if on-chip debugger implemented (via top’s
ON_CHIP_DEBUGGER_EN generic)

15 SYSINFO_SOC_HW_RESET set if a dedicated hardware reset of all core
registers is implemented (via package’s
dedicated_reset_c constant)

16 SYSINFO_SOC_IO_GPIO set if the GPIO is implemented (via top’s
IO_GPIO_EN generic)

17 SYSINFO_SOC_IO_MTIME set if the MTIME is implemented (via top’s
IO_MTIME_EN generic)

18 SYSINFO_SOC_IO_UART0 set if the primary UART0 is implemented (via
top’s IO_UART0_EN generic)

19 SYSINFO_SOC_IO_SPI set if the SPI is implemented (via top’s IO_SPI_EN
generic)

20 SYSINFO_SOC_IO_TWI set if the TWI is implemented (via top’s
IO_TWI_EN generic)

21 SYSINFO_SOC_IO_PWM set if the PWM is implemented (via top’s
IO_PWM_NUM_CH generic)

22 SYSINFO_SOC_IO_WDT set if the WDT is implemented (via top’s
IO_WDT_EN generic)

The NEORV32 Processor Visit on GitHub

120 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [C] Function

23 SYSINFO_SOC_IO_CFS set if the custom functions subsystem is
implemented (via top’s IO_CFS_EN generic)

24 SYSINFO_SOC_IO_TRNG set if the TRNG is implemented (via top’s
IO_TRNG_EN generic)

25 SYSINFO_SOC_IO_SLINK set if the SLINK is implemented (via top’s
SLINK_NUM_TX and/or SLINK_NUM_RX
generics)

26 SYSINFO_SOC_IO_UART1 set if the secondary UART1 is implemented (via
top’s IO_UART1_EN generic)

27 SYSINFO_SOC_IO_NEOLED set if the NEOLED is implemented (via top’s
IO_NEOLED_EN generic)

28 SYSINFO_SOC_IO_XIRQ set if the XIRQ is implemented (via top’s
XIRQ_NUM_CH generic)

29 SYSINFO_SOC_IO_GPTMR set if the GPTMR is implemented (via top’s
IO_GPTMR_EN generic)

30 SYSINFO_SOC_IO_XIP set if the XIP module is implemented (via top’s
IO_XIP_EN generic)

SYSINFO - Cache Configuration

Bit fields in this register are set to all-zero if the according cache is not
implemented.

Table 34. SYSINFO_CACHE bits

Bit Name [C] Function

3:0 SYSINFO_CACHE_IC_BLOCK_SIZE_3 :
SYSINFO_CACHE_IC_BLOCK_SIZE_0

log2(i-cache block size in bytes), via top’s
ICACHE_BLOCK_SIZE generic

7:4 SYSINFO_CACHE_IC_NUM_BLOCKS_3 :
SYSINFO_CACHE_IC_NUM_BLOCKS_0

log2(i-cache number of cache blocks), via top’s
ICACHE_NUM_BLOCKS generic

11:
9

SYSINFO_CACHE_IC_ASSOCIATIVITY_3 :
SYSINFO_CACHE_IC_ASSOCIATIVITY_0

log2(i-cache associativity), via top’s
ICACHE_ASSOCIATIVITY generic

15:
12

SYSINFO_CACHE_IC_REPLACEMENT_3 :
SYSINFO_CACHE_IC_REPLACEMENT_0

i-cache replacement policy (0001 = LRU if
associativity > 0)

32:
16

- zero, reserved for d-cache

[3] Pull high if not used.

[4] If the on-chip debugger is not implemented (ON_CHIP_DEBUGGER_EN = false) jtag_tdi_i is directly forwarded to jtag_tdo_o to
maintain the JTAG chain.

The NEORV32 RISC-V Processor Visit on GitHub

121 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Chapter 3. NEORV32 Central Processing Unit
(CPU)

Section Structure

• Architecture, Full Virtualization and RISC-V Compatibility

• CPU Top Entity - Signals and CPU Top Entity - Generics

• Instruction Sets and Extensions, Custom Functions Unit (CFU) and Instruction Timing

• Control and Status Registers (CSRs)

• Traps, Exceptions and Interrupts

• Bus Interface

Key Features

• 32-bit little-endian, multi-cycle, in-order rv32 RISC-V CPU

• Compatible to the RISC-V. Privileged Architecture - Machine ISA Version 1.12 specifications

• Available Instruction Sets and Extensions:

◦ B - bit-manipulation instructions

◦ C - 16-bit compressed instructions

◦ I - integer base ISA (always enabled)

◦ E - embedded CPU version (reduced register file size)

◦ M - integer multiplication and division hardware

◦ U - less-privileged user mode

◦ Zfinx - single-precision floating-point unit

◦ Zicsr - control and status register access (privileged architecture)

◦ Zicntr - CPU base counters

◦ Zihpm - hardware performance monitors

◦ Zifencei - instruction stream synchronization

◦ Zmmul - integer multiplication hardware

The NEORV32 Processor Visit on GitHub

122 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

◦ Zxcfu - custom instructions extension

◦ PMP - physical memory protection

◦ Debug - CPU Debug Mode (part of the on.chip debugger) including hardware Trigger Module

• RISC-V Compatibility: Compatible to the RISC-V user specifications and a subset of the RISC-V
privileged architecture specifications - passes the official RISC-V Architecture Tests (v2+)

• Official RISC-V open-source architecture ID

• Supports all of the machine-level Traps, Exceptions and Interrupts from the RISC-V
specifications (including bus access exceptions and all unimplemented/illegal/malformed
instructions)

◦ This is a special aspect on execution safety by Full Virtualization

◦ Standard RISC-V interrupts (external, timer, software) plus 16 custom fast interrupts

• Optional physical memory configuration (PMP), compatible to the RISC-V specifications

• Optional hardware performance monitors (HPM) for application benchmarking

• Separated Bus Interfaces for instruction fetch and data access

It is recommended to use the NEORV32 Processor as default top instance even if
you only want to use the actual CPU. Simply disable all the processor-internal
modules via the generics and you will get a "CPU wrapper" that provides a
minimal CPU environment and an external bus interface (like AXI4). This setup
also allows to further use the default bootloader and software framework. From
this base you can start building your own SoC. Of course you can also use the CPU
in it’s true stand-alone mode.

This documentation assumes the reader is familiar with the official RISC-V "User"
and "Privileged Architecture" specifications.

The NEORV32 RISC-V Processor Visit on GitHub

123 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.1. Architecture
The NEORV32 CPU was designed from scratch based only on the official ISA / privileged
architecture specifications. The following figure shows the simplified architecture of the CPU.

The CPU implements a multi-cycle architecture. Hence, each instruction is executed as a series of
consecutive micro-operations. In order to increase performance, the CPU’s front-end (instruction
fetch) and back-end (instruction execution) are de-couples via a FIFO (the "instruction prefetch
buffer"). Therefore, the front-end can already fetch new instructions while the back-end is still
processing previously-fetched instructions.

The front-end is responsible for fetching 32-bit chunks of instruction words (one aligned 32-bit
instruction, two 16-bit instructions or a mixture if 32-bit instructions are not aligned to 32-bit
boundaries). The instruction data is stored to a FIFO queue - the instruction prefetch buffer.

The back-end is responsible for the actual execution of the instruction. It includes an "issue engine",
which takes data from the instruction prefetch buffer and assembles 32-bit instruction words (plain
32-bit instruction or decompressed 16-bit instructions) for execution.

Front-end and back-end operate in parallel and with overlapping operations. Hence, the optimal
CPI (cycles per instructions) is 2, but it can be significantly higher: for instance when executing
loads/stores (accessing memory-mapped devices with high latency), executing multi-cycle ALU
operations (like divisions) or when the CPU front-end has to reload the prefetch buffer due to a
taken branch.

Basically, the NEORV32 CPU is somewhere between a classical pipelined architecture, where each
stage requires exactly one processing cycle (if not stalled) and a classical multi-cycle architecture,
which executes every single instruction (including fetch) in a series of consecutive micro-
operations. The combination of these two classical design paradigms allows an increased
instruction execution in contrast to a pure multi-cycle approach (due to overlapping operation of
fetch and execute) at a reduced hardware footprint (due to the multi-cycle concept).

The NEORV32 Processor Visit on GitHub

124 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

As a Von-Neumann machine, the CPU provides independent interfaces for instruction fetch and
data access. These two bus interfaces are merged into a single processor-internal bus via a
prioritizing bus switch (data accesses have higher priority). Hence, ALL memory locations
including peripheral devices are mapped to a single unified 32-bit address space.

3.2. Full Virtualization
Just like the RISC-V ISA the NEORV32 aims to provide maximum virtualization capabilities on CPU
and SoC level to allow a high standard of execution safety. The CPU supports all traps specified by
the official RISC-V specifications. [5] Thus, the CPU provides defined hardware fall-backs via traps
for any expected and unexpected situation (e.g. executing a malformed instruction or accessing a
non-allocated memory address). For any kind of trap the core is always in a defined and fully
synchronized state throughout the whole architecture (i.e. there are no out-of-order operations that
might have to be reverted). This allows a defined and predictable execution behavior at any time
improving overall execution safety.

Execution Safety - NEORV32 Virtualization Features

• Due to the acknowledged memory accesses the CPU is always sync with the memory system (i.e.
there is no speculative execution / no out-of-order states).

• The CPU supports all RISC-V compatible bus exceptions including access exceptions, which are
triggered if an accessed address does not respond or encounters an internal device error during
access.

• Accessed memory addresses (plain memory, but also memory-mapped devices) need to respond
within a fixed time window. Otherwise a bus access exception is raised.

• The RISC-V specs. state that executing an malformed instruction results in unpredictable
behavior. As an additional execution safety feature the NEORV32 CPU ensures that all
unimplemented/malformed/illegal instructions do raise an illegal instruction exceptions and do
not commit any state-changing operation (like writing registers or triggering memory
operations).

• To be continued…

3.3. RISC-V Compatibility
The NEORV32 CPU passes the tests of the RISC-V Architecture Test Framework. This framework is
used to check RISC-V implementations for compatibility with the official RISC-V ISA specifications.
The NEORV32 port of this test framework has been moved to a separate repository:
https://github.com/stnolting/neorv32-verif

The NEORV32 RISC-V Processor Visit on GitHub

125 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32-verif
https://github.com/stnolting/neorv32

RISC-V rv32_m/C Tests

Check cadd-01 ... OK
Check caddi-01 ... OK
Check caddi16sp-01 ... OK
Check caddi4spn-01 ... OK
Check cand-01 ... OK
Check candi-01 ... OK
Check cbeqz-01 ... OK
Check cbnez-01 ... OK
Check cebreak-01 ... OK
Check cj-01 ... OK
Check cjal-01 ... OK
Check cjalr-01 ... OK
Check cjr-01 ... OK
Check cli-01 ... OK
Check clui-01 ... OK
Check clw-01 ... OK
Check clwsp-01 ... OK
Check cmv-01 ... OK
Check cnop-01 ... OK
Check cor-01 ... OK
Check cslli-01 ... OK
Check csrai-01 ... OK
Check csrli-01 ... OK
Check csub-01 ... OK
Check csw-01 ... OK
Check cswsp-01 ... OK
Check cxor-01 ... OK

OK: 27/27 RISCV_TARGET=neorv32 RISCV_DEVICE=C XLEN=32

The NEORV32 Processor Visit on GitHub

126 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

RISC-V rv32_m/I Tests

Check add-01 ... OK
Check addi-01 ... OK
Check and-01 ... OK
Check andi-01 ... OK
Check auipc-01 ... OK
Check beq-01 ... OK
Check bge-01 ... OK
Check bgeu-01 ... OK
Check blt-01 ... OK
Check bltu-01 ... OK
Check bne-01 ... OK
Check fence-01 ... OK
Check jal-01 ... IGNORED ①
Check jalr-01 ... OK
Check lb-align-01 ... OK
Check lbu-align-01 ... OK
Check lh-align-01 ... OK
Check lhu-align-01 ... OK
Check lui-01 ... OK
Check lw-align-01 ... OK
Check or-01 ... OK
Check ori-01 ... OK
Check sb-align-01 ... OK
Check sh-align-01 ... OK
Check sll-01 ... OK
Check slli-01 ... OK
Check slt-01 ... OK
Check slti-01 ... OK
Check sltiu-01 ... OK
Check sltu-01 ... OK
Check sra-01 ... OK
Check srai-01 ... OK
Check srl-01 ... OK
Check srli-01 ... OK
Check sub-01 ... OK
Check sw-align-01 ... OK
Check xor-01 ... OK
Check xori-01 ... OK
Check fence-01 ... OK

OK: 39/39 RISCV_TARGET=neorv32 RISCV_DEVICE=I XLEN=32

① Test is skipped due to a GHDL simulation issue.

The NEORV32 RISC-V Processor Visit on GitHub

127 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

RISC-V rv32_m/M Tests

Check div-01 ... OK
Check divu-01 ... OK
Check mul-01 ... OK
Check mulh-01 ... OK
Check mulhsu-01 ... OK
Check mulhu-01 ... OK
Check rem-01 ... OK
Check remu-01 ... OK

OK: 8/8 RISCV_TARGET=neorv32 RISCV_DEVICE=M XLEN=32

RISC-V rv32_m/privilege Tests

Check ebreak ... OK
Check ecall ... OK
Check misalign-beq-01 ... OK
Check misalign-bge-01 ... OK
Check misalign-bgeu-01 ... OK
Check misalign-blt-01 ... OK
Check misalign-bltu-01 ... OK
Check misalign-bne-01 ... OK
Check misalign-jal-01 ... OK
Check misalign-lh-01 ... OK
Check misalign-lhu-01 ... OK
Check misalign-lw-01 ... OK
Check misalign-sh-01 ... OK
Check misalign-sw-01 ... OK
Check misalign1-jalr-01 ... OK
Check misalign2-jalr-01 ... OK

OK: 16/16 RISCV_TARGET=neorv32 RISCV_DEVICE=privilege XLEN=32

RISC-V rv32_m/Zifencei Tests

Check Fencei ... OK

OK: 1/1 RISCV_TARGET=neorv32 RISCV_DEVICE=Zifencei XLEN=32

The NEORV32 Processor Visit on GitHub

128 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.3.1. RISC-V Incompatibility Issues and Limitations

This list shows the currently identified issues regarding full RISC-V-compatibility. Note that most of
the cases listed below are "special cases" that should not occur in "normal" programs. However,
some of these incompatibilities can be circumvented using software emulation (for example for
handling unaligned memory accesses).

Read-Only "Read-Write" CSRs

The NEORV32 misa and mtval CSRs in the NEORV32 are read-only (the RISC-V specs.
declare these registers as read/write). Any machine-mode write access to them is
ignored and will not cause any exceptions or side-effects to maintain RISC-V
compatibility.

Physical Memory Protection

The RISC-V-compatible NEORV32 Machine Physical Memory Protection CSRs only
implements the TOR (top of region) mode and only up to 16 PMP regions.
Furthermore, the pmpcfg's lock bits only lock the according PMP entry and not the
entries below. All region rules are checked in parallel without prioritization so for
identical memory regions the most restrictive PMP rule will be enforced.

No HW-Support of Misaligned Memory Accesses

The CPU does not support the resolution of unaligned memory access by the
hardware. This is not a RISC-V-compatibility issue but an important thing to know.
Any kind of unaligned memory access will raise an exception to allow a software-
based emulation.

The NEORV32 RISC-V Processor Visit on GitHub

129 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.4. CPU Top Entity - Signals
The following table shows all interface signals of the CPU top entity rtl/core/neorv32_cpu.vhd. The
type of all signals is std_ulogic or std_ulogic_vector, respectively. The "Dir." column shows the signal
direction seen from the CPU.

Table 35. NEORV32 CPU top entity signals

Signal Width Dir. Description

Global Signals

clk_i 1 in global clock line, all registers triggering on rising edge

rstn_i 1 in global reset, low-active

sleep_o 1 out CPU is in sleep mode when set

debug_o 1 out CPU is in debug mode when set

priv_o 1 out current effective CPU privilege level (0 = user, 1 = machine)

Instruction Bus Interface

i_bus_addr_o 32 out access address

i_bus_rdata_i 32 in read data

i_bus_re_o 1 out read request (one-shot)

i_bus_ack_i 1 in bus transfer acknowledge from accessed peripheral

i_bus_err_i 1 in bus transfer terminate from accessed peripheral

i_bus_fence_o 1 out indicates an executed fence.i instruction

Data Bus Interface

d_bus_addr_o 32 out access address

d_bus_rdata_i 32 in read data

d_bus_wdata_o 32 out write data

d_bus_ben_o 4 out byte enable

d_bus_we_o 1 out write request (one-shot)

d_bus_re_o 1 out read request (one-shot)

d_bus_ack_i 1 in bus transfer acknowledge from accessed peripheral

d_bus_err_i 1 in bus transfer terminate from accessed peripheral

d_bus_fence_o 1 out indicates an executed fence instruction

System Time (for time[h] CSR)

time_i 64 in system time input from Machine System Timer (MTIME)

Interrupts, RISC-V-compatible (Traps, Exceptions and Interrupts)

msw_irq_i 1 in RISC-V machine software interrupt

The NEORV32 Processor Visit on GitHub

130 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Signal Width Dir. Description

mext_irq_i 1 in RISC-V machine external interrupt

mtime_irq_i 1 in RISC-V machine timer interrupt

Interrupts, NEORV32-specific (Traps, Exceptions and Interrupts)

firq_i 16 in fast interrupt request signals

Enter Debug Mode Request (On-Chip Debugger (OCD))

db_halt_req_i 1 in request CPU to halt and enter debug mode

Protocol

See section Bus Interface for the instruction fetch and data access protocol.

The NEORV32 RISC-V Processor Visit on GitHub

131 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.5. CPU Top Entity - Generics
Most of the CPU configuration generics are a subset of the actual Processor configuration generics
(see section Processor Top Entity - Generics). and are not listed here. However, the CPU provides
some specific generics that are used to configure the CPU for the NEORV32 processor setup. These
generics are assigned by the processor setup only and are not available for user defined
configuration. The specific generics are listed below.

CPU_BOOT_ADDR std_ulogic_vector(31 downto 0) no default value

This address defines the reset address at which the CPU starts fetching instructions after reset. In
terms of the NEORV32 processor, this generic is configured with the base address of the bootloader
ROM (default) or with the base address of the processor-internal instruction memory (IMEM) if the
bootloader is disabled (INT_BOOTLOADER_EN = false). See section Address Space for more
information.

CPU_DEBUG_ADDR std_ulogic_vector(31 downto 0) no default value

This address defines the entry address for the "execution based" on-chip debugger. By default, this
generic is configured with the base address of the debugger memory. See section On-Chip
Debugger (OCD) for more information.

CPU_EXTENSION_RISCV_DEBUG boolean no default value

Implement RISC-V-compatible "debug" CPU operation mode. See section CPU Debug Mode for more
information.

The NEORV32 Processor Visit on GitHub

132 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.6. Instruction Sets and Extensions
The basic NEORV32 is a RISC-V rv32i architecture that provides several optional RISC-V CPU and ISA
(instruction set architecture) extensions. For more information regarding the RISC-V ISA extensions
please see the the RISC-V Instruction Set Manual - Volume I: Unprivileged ISA and The RISC-V
Instruction Set Manual Volume II: Privileged Architecture, which are available in the projects
docs/references folder.

Discovering ISA Extensions

The CPU can discover available ISA extensions via the misa & mxisa CSRs or by
executing an instruction and checking for an illegal instruction exception (→ Full
Virtualization).

Executing an instruction from an extension that is not supported yet or that is
currently not enabled (via the according top entity generic) will raise an illegal
instruction exception.

3.6.1. B - Bit-Manipulation Operations

The B ISA extension adds instructions for bit-manipulation operations. This extension is enabled if
the CPU_EXTENSION_RISCV_B configuration generic is true. The official RISC-V specifications can
be found here: https://github.com/riscv/riscv-bitmanip A copy of the spec is also available in
docs/references.

The NEORV32 B ISA extension includes the following sub-extensions (according to the RISC-V bit-
manipulation spec. v.093) and their corresponding instructions:

• Zba - Address-generation instructions

◦ sh1add sh2add sh3add

• Zbb - Basic bit-manipulation instructions

◦ andn orn xnor

◦ clz ctz cpop

◦ max maxu min minu

◦ sext.b sext.h zext.h

◦ rol ror rori

◦ orc.b rev8

• Zbc - Carry-less multiplication instructions

◦ clmul clmulh clmulr

• Zbs - Single-bit instructions

◦ bclr bclri

◦ bext bexti

The NEORV32 RISC-V Processor Visit on GitHub

133 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/riscv/riscv-bitmanip
https://github.com/stnolting/neorv32

◦ bext binvi

◦ bset bseti

By default, the bit-manipulation unit uses an iterative approach to compute shift-
related operations like clz and rol. To increase performance (at the cost of
additional hardware resources) the FAST_SHIFT_EN generic can be enabled to
implement full-parallel logic (like barrel shifters) for all shift-related B instructions.

The B extension is frozen and officially ratified. However, there is no software
support for this extension in the upstream GCC RISC-V port yet. An intrinsic library
is provided to utilize the provided B extension features from C-language code (see
sw/example/bitmanip_test) to circumvent this.

3.6.2. C - Compressed Instructions

The compressed ISA extension provides 16-bit encodings of commonly used instructions to reduce
code space size. The C extension is available when the CPU_EXTENSION_RISCV_C configuration
generic is true. In this case the following instructions are available:

• c.addi4spn c.lw c.sw c.nop c.addi c.jal c.li c.addi16sp c.lui c.srli c.srai c.andi c.sub c.xor
c.or c.and c.j c.beqz c.bnez c.slli c.lwsp c.jr c.mv c.ebreak c.jalr c.add c.swsp

When the compressed instructions extension is enabled, branches to an unaligned
and uncompressed instruction require an additional instruction fetch to load the
according second half-word of that instruction. The performance can be increased
again by forcing a 32-bit alignment of branch target addresses. By default, this is
enforced via the GCC -falign-functions=4, -falign-labels=4, -falign-loops=4 and
-falign-jumps=4 compile flags (via the makefile).

3.6.3. E - Embedded CPU

The embedded CPU extensions reduces the size of the general purpose register file from 32 entries
to 16 entries to decrease physical hardware requirements (for example block RAM). This extensions
is enabled when the CPU_EXTENSION_RISCV_E configuration generic is true. Accesses to registers
beyond x15 will raise and illegal instruction exception. This extension does not add any additional
instructions or features.

Due to the reduced register file size an alternate toolchain ABI (ilp32e) is required.

3.6.4. I - Base Integer ISA

The CPU always supports the complete rv32i base integer instruction set. This base set is always
enabled regardless of the setting of the remaining exceptions. The base instruction set includes the
following instructions:

The NEORV32 Processor Visit on GitHub

134 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

• immediate: lui auipc

• jumps: jal jalr

• branches: beq bne blt bge bltu bgeu

• memory: lb lh lw lbu lhu sb sh sw

• alu: addi slti sltiu xori ori andi slli srli srai add sub sll slt sltu xor srl sra or and

• environment: ecall ebreak fence

In order to keep the hardware footprint low, the CPU’s shift unit uses a bit-serial
approach. Hence, shift operations take up to 32 cycles (plus overhead) depending
on the actual shift amount. Alternatively, the shift operations can be processed
completely in parallel by a fast (but large) barrel shifter if the FAST_SHIFT_EN
generic is true. In that case, shift operations complete within 2 cycles (plus
overhead) regardless of the actual shift amount.

Internally, the fence instruction does not perform any operation inside the CPU. It
only sets the top’s d_bus_fence_o signal high for one cycle to inform the memory
system a fence instruction has been executed. Any flags within the fence
instruction word are ignore by the hardware.

3.6.5. M - Integer Multiplication and Division

Hardware-accelerated integer multiplication and division operations are available when the
CPU_EXTENSION_RISCV_M configuration generic is true. In this case the following instructions are
available:

• multiplication: mul mulh mulhsu mulhu

• division: div divu rem remu

By default, multiplication and division operations are executed in a bit-serial
approach. Alternatively, the multiplier core can be implemented using DSP blocks
if the FAST_MUL_EN generic is true allowing faster execution. Multiplications and
divisions always require a fixed amount of cycles to complete - regardless of the
input operands.

Regardless of the setting of the FAST_MUL_EN generic multiplication and division
instructions operate independently of the input operands. Hence, there is no early
completion of multiply by one/zero and divide by zero operations.

3.6.6. Zmmul - Integer Multiplication

This is a sub-extension of the M ISA extension. It implements the multiplication-only operations of
the M extensions and is intended for size-constrained setups that require hardware-based integer
multiplications but not hardware-based divisions, which will be computed entirely in software.

The NEORV32 RISC-V Processor Visit on GitHub

135 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

This extension requires only ~50% of the hardware utilization of the "full" M extension. It is
implemented if the CPU_EXTENSION_RISCV_Zmmul configuration generic is true.

• multiplication: mul mulh mulhsu mulhu

If Zmmul is enabled, executing any division instruction from the M ISA extension (div, divu, rem, remu)
will raise an illegal instruction exception.

Note that M and Zmmul extensions cannot be enabled at the same time.

If your RISC-V GCC toolchain does not (yet) support the _Zmmul ISA extensions, it
can be "emulated" using a rv32im machine architecture and setting the -mno-div
compiler flag (example $ make MARCH=rv32im USER_FLAGS+=-mno-div clean_all exe).

3.6.7. U - Less-Privileged User Mode

In addition to the basic (and highest-privileged) machine-mode, the user-mode ISA extensions adds
a second less-privileged operation mode. It is implemented if the CPU_EXTENSION_RISCV_U
configuration generic is true. Code executed in user-mode cannot access machine-mode CSRs.
Furthermore, user-mode access to the address space (like peripheral/IO devices) can be constrained
via the physical memory protection (PMP). Any kind of privilege rights violation will raise an
exception to allow Full Virtualization.

Additional CSRs:

• mcounteren - machine counter enable to constrain user-mode access to timer/counter CSRs

3.6.8. X - NEORV32-Specific (Custom) Extensions

The NEORV32-specific extensions are always enabled and are indicated by the set X bit in the misa
CSR.

The most important points of the NEORV32-specific extensions are: * The CPU provides 16 fast
interrupt interrupts (FIRQ), which are controlled via custom bits in the mie and mip CSRs. These
extensions are mapped to CSR bits, that are available for custom use according to the RISC-V specs.
Also, custom trap codes for mcause are implemented. * All
undefined/unimplemented/malformed/illegal instructions do raise an illegal instruction exception
(see Full Virtualization). * There are NEORV32-Specific CSRs.

3.6.9. Zfinx Single-Precision Floating-Point Operations

The Zfinx floating-point extension is an alternative of the standard F floating-point ISA extension.
The Zfinx extensions also uses the integer register file x to store and operate on floating-point data
instead of a dedicated floating-point register file (hence, F-in-x). Thus, the Zfinx extension requires
less hardware resources and features faster context changes. This also implies that there are NO
dedicated f register file-related load/store or move instructions. The official RISC-V specifications
can be found here: https://github.com/riscv/riscv-zfinx

The NEORV32 Processor Visit on GitHub

136 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/riscv/riscv-zfinx
https://github.com/stnolting/neorv32

The NEORV32 floating-point unit used by the Zfinx extension is compatible to the
IEEE-754 specifications.

The Zfinx extensions only supports single-precision (.s instruction suffix), so it is a direct
alternative to the F extension. The Zfinx extension is implemented when the
CPU_EXTENSION_RISCV_Zfinx configuration generic is true. In this case the following instructions
and CSRs are available:

• conversion: fcvt.s.w fcvt.s.wu fcvt.w.s fcvt.wu.s

• comparison: fmin.s fmax.s feq.s flt.s fle.s

• computational: fadd.s fsub.s fmul.s

• sign-injection: fsgnj.s fsgnjn.s fsgnjx.s

• number classification: fclass.s

• compressed instructions: c.flw c.flwsp c.fsw c.fswsp

Additional CSRs:

• fcsr - FPU control register

• frm - rounding mode control

• fflags - FPU status flags

Fused multiply-add instructions f[n]m[add/sub].s are not supported! Division
fdiv.s and square root fsqrt.s instructions are not supported yet!

Subnormal numbers ("de-normalized" numbers) are not supported by the
NEORV32 FPU. Subnormal numbers (exponent = 0) are flushed to zero setting them
to +/- 0 before entering the FPU’s processing core. If a computational instruction
(like fmul.s) generates a subnormal result, the result is also flushed to zero during
normalization.

The Zfinx extension is not yet officially ratified, but is expected to stay unchanged.
There is no software support for the Zfinx extension in the upstream GCC RISC-V
port yet. However, an intrinsic library is provided to utilize the provided Zfinx
floating-point extension from C-language code (see
sw/example/floating_point_test).

3.6.10. Zicsr Control and Status Register Access / Privileged Architecture

The CSR access instructions as well as the exception and interrupt system (= the privileged
architecture) is implemented when the CPU_EXTENSION_RISCV_Zicsr configuration generic is true.

The NEORV32 RISC-V Processor Visit on GitHub

137 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

If the Zicsr extension is disabled the CPU does not provide any privileged
architecture features at all! In order to provide the full set of privileged functions
that are required to run more complex tasks like operating system and to allow a
secure execution environment the Zicsr extension should be always enabled.

In this case the following instructions are available:

• CSR access: csrrw csrrs csrrc csrrwi csrrsi csrrci

• environment: mret wfi

If rd=x0 for the csrrw[i] instructions there will be no actual read access to the
according CSR. However, access privileges are still enforced so these instruction
variants do cause side-effects (the RISC-V spec. state that these combinations "shall
not cause any side-effects").

• wfi Instruction **

The "wait for interrupt instruction" wfi acts like a sleep command. When executed, the CPU is
halted until a valid interrupt request occurs. To wake up again, at least one interrupt source has to
be enabled via the mie CSR and the global interrupt enable flag in mstatus has to be set.

Executing the wfi instruction is user-mode will raise an illegal instruction
exception if mstatus.TW is set.

3.6.11. Zicntr CPU Base Counters

The Zicntr ISA extension adds the basic cycle [m]cycle[h]), instruction-retired ([m]instret[h]) and
time (time[h]) counters. This extensions is stated is mandatory by the RISC-V spec. However, size-
constrained setups may remove support for these counters. Section (Machine) Counter and Timer
CSRs shows a list of all Zicntr-related CSRs. These are available if the Zicntr ISA extensions is
enabled via the CPU_EXTENSION_RISCV_Zicntr generic.

Additional CSRs:

• cycle[h], mcycle[h] - cycle counter

• instret[h], minstret[h] - instructions-retired counter

• time[h] - system wall-clock time

Disabling the Zicntr extension does not remove the time[h]-driving MTIME unit.

If Zicntr is disabled, all accesses to the according counter CSRs will raise an illegal instruction
exception.

The NEORV32 Processor Visit on GitHub

138 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.6.12. Zihpm Hardware Performance Monitors

In additions to the base cycle, instructions-retired and time counters the NEORV32 CPU provides up
to 29 hardware performance monitors (HPM 3..31), which can be used to benchmark applications.
Each HPM consists of an N-bit wide counter (split in a high-word 32-bit CSR and a low-word 32-bit
CSR), where N is defined via the top’s HPM_CNT_WIDTH generic (0..64-bit) and a corresponding
event configuration CSR. The event configuration CSR defines the architectural events that lead to
an increment of the associated HPM counter. See the HPM_NUM_CNTS documentation for a list of
available trigger events.

The HPM counters are available if the Zihpm ISA extensions is enabled via the
CPU_EXTENSION_RISCV_Zihpm generic. The actual number of implemented HPM counters is
defined by the HPM_NUM_CNTS generic.

Additional CSRs:

• mhpmevent 3..31 (depending on HPM_NUM_CNTS) - event configuration CSRs

• mhpmcounter[h] 3..31 (depending on HPM_NUM_CNTS) - counter CSRs

The HPM counter CSRs can only be accessed in machine-mode. Hence, the
according mcounteren CSR bits are always zero and read-only. Any access from less-
privileged modes will raise an illegal instruction exception.

Auto-increment of the HPMs can be deactivated individually via the mcountinhibit
CSR.

3.6.13. Zifencei Instruction Stream Synchronization

The Zifencei CPU extension is implemented if the CPU_EXTENSION_RISCV_Zifencei configuration
generic is true. It allows manual synchronization of the instruction stream via the following
instruction:

• fence.i

The fence.i instruction resets the CPU’s front-end (instruction fetch) and flushes the prefetch
buffer. This allows a clean re-fetch of modified instructions from memory. Also, the top’s
i_bus_fencei_o signal is set high for one cycle to inform the memory system (like the i-cache to
perform a flush/reload. Any additional flags within the fence.i instruction word are ignore by the
hardware.

3.6.14. Zxcfu Custom Instructions Extension (CFU)

The Zxcfu presents a NEORV32-specific custom RISC-V ISA extension (Z = sub-extension, x =
platform-specific custom extension, cfu = name of the custom extension). When enabled via the
CPU_EXTENSION_RISCV_Zxcfu configuration generic, this ISA extensions adds the Custom
Functions Unit (CFU) to the CPU core. The CFU is a module that allows to add custom RISC-V
instructions to the processor core.

The NEORV32 RISC-V Processor Visit on GitHub

139 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

The CPU is implemented as ALU co-processor and is integrated right into the CPU’s pipeline
providing minimal data transfer latency as it has direct access to the core’s register file. Up to 1024
custom instructions can be implemented within the CFU. These instructions are mapped to an
OPCODE space that has been explicitly reserved by the RISC-V spec for custom extensions.

Software can utilize the custom instructions by using intrinsic functions, which are inline assembly
functions that behave like "regular" C functions.

For more information regarding the CFU see section Custom Functions Unit (CFU).

The CFU / Zxcfu ISA extension is intended for application-specific instructions. If
you like to add more complex accelerators or interfaces that can also operate
independently of the CPU take a look at the memory-mapped Custom Functions
Subsystem (CFS).

3.6.15. PMP Physical Memory Protection

The NEORV32 physical memory protection (PMP) provides an elementary memory protection
mechanism that can be used to constrain read, write and execute rights of arbitrary memory
regions. The PMP is compatible to the RISC-V Privileged Architecture Specifications. For detailed
information see the according spec.'s sections.

The NEORV32 PMP only supports TOR (top of region) mode, which basically is a
"base-and-bound" concept, and only up to 16 PMP regions.

The physical memory protection logic is implemented if the PMP_NUM_REGIONS configuration
generic is greater than zero. This generic also defines the total number of available configurable
protection regions. The minimal granularity of a protected region is defined by the
PMP_MIN_GRANULARITY generic. Larger granularity will reduce hardware complexity but will
also decrease granularity as the minimal region sizes increases. The default value is 4 bytes, which
allows a minimal region size of 4 bytes.

If implemented the PMP provides the following additional CSRs:

• pmpcfg 0..3 (depending on configuration) - PMP configuration registers, 4 entries per CSR

• pmpaddr 0..15 (depending on configuration) - PMP address registers

Operation Summary

Any CPU access address (from the instruction fetch or data access interface) is tested if it matches
any of the specified PMP regions. If there is a match, the configured access rights are enforced:

• a write access (store) will fail if no write attribute is set

• a read access (load) will fail if no read attribute is set

• an instruction fetch access will fail if no execute attribute is set

The NEORV32 Processor Visit on GitHub

140 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

If an access to a protected region does not have the according access rights it will raise the
according instruction/load/store bus access fault exception.

By default, all PMP checks are enforced for user-mode only. However, PMP rules can also be
enforced for machine-mode when the according PMP region has the "LOCK" bit set. This will also
prevent any write access to according region’s PMP CSRs until the CPU is reset.

Rule Prioritization

All rules are checked in parallel without prioritization so for identical memory
regions the most restrictive PMP rule will be enforced.

PMP Example Program

A simple PMP example program can be found in sw/example/demo_pmp.

Impact on Critical Path

When implementing more PMP regions that a "certain critical limit" an additional register stage is
automatically inserted into the CPU’s memory interfaces to keep impact on the critical path as short
as minimal as possible. Unfortunately, this will also increase the latency of instruction fetches and
data access by one cycle. The critical limit can be modified by a constant from the main VHDL
package file (rtl/core/neorv32_package.vhd, default value = 8):

-- "critical" number of PMP regions --
constant pmp_num_regions_critical_c : natural := 8;

Reducing the minimal PMP region size / granularity via the
PMP_MIN_GRANULARITY to entity generic will also reduce hardware utilization
and impact on critical path.

The NEORV32 RISC-V Processor Visit on GitHub

141 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.7. Custom Functions Unit (CFU)
The Custom Functions Unit is the central part of the Zxcfu Custom Instructions Extension (CFU) and
represents the actual hardware module, which is used to implement custom RISC-V instructions.
The concept of the NEORV32 CFU has been highly inspired by google’s CFU-Playground.

The CFU is intended for operations that are inefficient in terms of performance, latency, energy
consumption or program memory requirements when implemented in pure software. Some
potential application fields and exemplary use-cases might include:

• AI: sub-word / vector / SIMD operations like adding all four bytes of a 32-bit data word

• Cryptographic: bit substitution and permutation

• Communication: conversions like binary to gray-code

• Image processing: look-up-tables for color space transformations

• implementing instructions from other RISC-V ISA extensions that are not yet supported by the
NEORV32

The CFU is not intended for complex and autonomous functional units that
implement complete accelerators like block-based AES de-/encoding). Such
accelerator can be implemented within the Custom Functions Subsystem (CFS). A
comparison of all chip-internal hardware extension options is provided in the user
guide section Adding Custom Hardware Modules.

3.7.1. Custom CFU Instructions - General

The custom instruction utilize a specific instruction space that has been explicitly reserved for user-
defined extensions by the RISC-V specifications ("Guaranteed Non-Standard Encoding Space"). The
NEORV32 CFU uses the CUSTOM0 opcode to identify custom instructions. The binary encoding of
this opcode is 0001011.

The custom instructions processed by the CFU use the 32-bit R2-type RISC-V instruction format,
which consists of six bit-fields:

• funct7: 7-bit immediate

• rs2: address of second source register

• rs1: address of first source register

• funct3: 3-bit immediate

• rd: address of destination register

• opcode: always 0001011 to identify custom instructions

Figure 9. CFU instruction format (RISC-V R2-type)

The NEORV32 Processor Visit on GitHub

142 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/google/CFU-Playground
https://stnolting.github.io/neorv32/ug/#_adding_custom_hardware_modules
https://github.com/stnolting/neorv32

Obviously, all bit-fields including the immediates have to be static at compile time.

Custom Instructions - Exceptions

The CPU control logic can only check the CUSTOM0 opcode of the custom
instructions to check if the instruction word is valid. It cannot check the funct3 and
funct7 bit-fields since they are implementation-defined. Hence, a custom CFU
instruction can never raise an illegal instruction exception. However, custom will
raise an illegal instruction exception if the CFU is not enabled/implemented (i.e.
Zxcfu ISA extension is not enabled).

The CFU operates on the two source operands and return the processing result to the destination
register. The actual instruction to be performed can be defined by using the funct7 and funct3 bit
fields. These immediate bit-fields can also be used to pass additional data to the CFU like offsets,
look-up-tables addresses or shift-amounts. However, the actual functionality is completely user-
defined.

3.7.2. Using Custom Instructions in Software

The custom instructions provided by the CFU are included into plain C code by using intrinsics.
Intrinsics behave like "normal" functions but under the hood they are a set of macros that hide the
complexity of inline assembly. Using such intrinsics removes the need to modify the compiler, built-
in libraries and the assembler when including custom instructions.

The NEORV32 software framework provides 8 pre-defined custom instructions macros, which are
defined in sw/lib/include/neorv32_cpu_cfu.h. Each intrinsic provides an implicit definition of the
instruction word’s funct3 bit-field:

Listing 4. CFU instruction prototypes

neorv32_cfu_cmd0(funct7, rs1, rs2) // funct3 = 000
neorv32_cfu_cmd1(funct7, rs1, rs2) // funct3 = 001
neorv32_cfu_cmd2(funct7, rs1, rs2) // funct3 = 010
neorv32_cfu_cmd3(funct7, rs1, rs2) // funct3 = 011
neorv32_cfu_cmd4(funct7, rs1, rs2) // funct3 = 100
neorv32_cfu_cmd5(funct7, rs1, rs2) // funct3 = 101
neorv32_cfu_cmd6(funct7, rs1, rs2) // funct3 = 110
neorv32_cfu_cmd7(funct7, rs1, rs2) // funct3 = 111

Each intrinsic functions always returns a 32-bit value (the processing result). Furthermore, each
intrinsic function requires three arguments:

• funct7 - 7-bit immediate

• rs2 - source operand 2, 32-bit

• rs1 - source operand 1, 32-bit

The funct7 bit-field is used to pass a 7-bit literal to the CFU. The rs1 and rs2 arguments to pass the

The NEORV32 RISC-V Processor Visit on GitHub

143 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

actual data to the CFU. These arguments can be populated with variables or literals. The following
example show how to pass arguments when executing neorv32_cfu_cmd6: funct7 is set to all-zero, rs1
is given the literal 2751 and rs2 is given a variable that contains the return value from
some_function().

Listing 5. CFU instruction usage example

uint32_t opb = some_function();
uint32_t res = neorv32_cfu_cmd6(0b0000000, 2751, opb);

CFU Example Program

There is a simple example program for the CFU, which shows how to use the
default CFU hardware module. The example program is located in
sw/example/demo_cfu.

3.7.3. Custom Instructions Hardware

The actual functionality of the CFU’s custom instruction is defined by the logic in the CFU itself. It is
the responsibility of the designer to implement this logic within the CFU hardware module
rtl/core/neorv32_cpu_cp_cfu.vhd.

The CFU hardware module receives the data from instruction word’s immediate bit-fields and also
the operation data, which is fetched from the CPU’s register file.

Listing 6. CFU instruction data passing example

uint32_t opb = 0x12345678UL;
uint32_t res = neorv32_cfu_cmd6(0b0100111, 0x00cafe00, opb);

In this example the CFU hardware module receives the two source operands as 32-bit signal and the
immediate values as 7-bit and 3-bit signals:

• rs1_i (32-bit) contains the data from the rs1 register (here = 0x00cafe00)

• rs2_i (32-bit) contains the data from the rs2 register (here = 0x12345678)

• control.funct3 (3-bit) contains the immediate value from the funct3 bit-field (here = 0b110;
"cmd6")

• control.funct7 (7-bit) contains the immediate value from the funct7 bit-field (here = 0b0100111)

The CFU executes the according instruction (for example this is selected by the control.funct3
signal) and provides the operation result in the 32-bit control.result signal. The processing can be
entirely combinatorial, so the result is available at the end of the current clock cycle. Processing can
also take several clock cycles and may also include internal states and memories. As soon as the
CFU has completed operations it sets the control.done signal high.

The NEORV32 Processor Visit on GitHub

144 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

CFU Hardware Example & More Details

The default CFU module already implement some exemplary instructions that are
used for illustration by the CFU example program. See the CFU’s VHDL source file
(rtl/core/neorv32_cpu_cp_cfu.vhd), which is highly commented to explain the
available signals and the handshake with the CPU pipeline.

CFU Execution Time

The CFU is not required to finish processing within a bound time. However, the
designer should keep in mind that the CPU is stalled until the CFU has finished
processing. This also means the CPU cannot react to pending interrupts.
Nevertheless, interrupt requests will still be queued.

The NEORV32 RISC-V Processor Visit on GitHub

145 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.8. Instruction Timing
The instruction timing listed in the table below shows the required clock cycles for executing a
certain instruction. These instruction cycles assume a bus access without additional wait states and
a filled pipeline.

Average CPI (cycles per instructions) values for "real applications" like for executing the CoreMark
benchmark for different CPU configurations are presented in CPU Performance.

Table 36. Clock cycles per instruction

Class ISA Instruction(s) Execution cycles

ALU I/E addi slti sltiu xori ori andi add sub
slt sltu xor or and lui auipc

2

ALU C c.addi4spn c.nop c.addi c.li
c.addi16sp c.lui c.andi c.sub c.xor

c.or c.and c.add c.mv

2

ALU I/E slli srli srai sll srl sra 3 + SA[6]/4 + SA%4;
FAST_SHIFT[7]: 4;
TINY_SHIFT[8]: 2..32

ALU C c.srli c.srai c.slli 3 + SA[9]; FAST_SHIFT[10]:

Branches I/E beq bne blt bge bltu bgeu Taken: 5 + (ML-1)[11]; Not
taken: 3

Branches C c.beqz c.bnez Taken: 5 + (ML-1); Not taken:
3

Jumps / Calls I/E jal jalr 5 + (ML-1)

Jumps / Calls C c.jal c.j c.jr c.jalr 5 + (ML-1)

Memory access I/E lb lh lw lbu lhu sb sh sw 5 + (ML-2)

Memory access C c.lw c.sw c.lwsp c.swsp 5 + (ML-2)

Memory access A lr.w sc.w 5 + (ML-2)

MulDiv M mul mulh mulhsu mulhu 2+32+2; FAST_MUL[12]: 4

MulDiv M div divu rem remu 2+32+2

System Zicsr csrrw csrrs csrrc csrrwi csrrsi csrrci 3

System Zicsr ecall ebreak 3

System Zicsr+C c.break 3

System Zicsr wfi 3

System Zicsr mret dret 5

Fence I/E fence 4 + ML

Fence Zifencei fence.i 4 + ML

The NEORV32 Processor Visit on GitHub

146 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Class ISA Instruction(s) Execution cycles

Floating-point -
artihmetic

Zfinx fadd.s 110

Floating-point -
artihmetic

Zfinx fsub.s 112

Floating-point -
artihmetic

Zfinx fmul.s 22

Floating-point -
compare

Zfinx fmin.s fmax.s feq.s flt.s fle.s 13

Floating-point -
misc

Zfinx fsgnj.s fsgnjn.s fsgnjx.s fclass.s 12

Floating-point -
conversion

Zfinx fcvt.w.s fcvt.wu.s 47

Floating-point -
conversion

Zfinx fcvt.s.w fcvt.s.wu 48

Bit-manipulation -
arithmetic/logic

B(Zbb) min[u] max[u] sext.b sext.h andn orn
xnor zext(pack) rev8(grevi) orc.b(gorci)

4

Bit-manipulation -
shifts

B(Zbb) clz ctz 4 + 1..32; FAST_SHIFT: 4

Bit-manipulation -
shifts

B(Zbb) cpop 4 + 32; FAST_SHIFT: 4

Bit-manipulation -
shifts

B(Zbb) rol ror[i] 4 + SA; FAST_SHIFT: 4

Bit-manipulation -
shifted-add

B(Zba) sh1add sh2add sh3add 4

Bit-manipulation -
single-bit

B(Zbs) sbset[i] sbclr[i] sbinv[i] sbext[i] 4

Bit-manipulation -
carry-less multiply

B(Zbc) clmul clmulh clmulr 4 + 32

Custom
instructions (CFU)

Zxcfu - min. 4

Illegal instructions Zicsr - min. 2

The presented values of the floating-point execution cycles are average values -
obtained from 4096 instruction executions using pseudo-random input values. The
execution time for emulating the instructions (using pure-software libraries) is
~17..140 times higher.

The NEORV32 RISC-V Processor Visit on GitHub

147 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9. Control and Status Registers (CSRs)
The following table shows a summary of all available CSRs. The address field defines the CSR
address for the CSR access instructions. The [ASM] name can be used for (inline) assembly code
and is directly understood by the assembler/compiler. The [C] names are defined by the NEORV32
core library and can be used as immediate in plain C code. The R/W column shows whether the CSR
can be read and/or written. The NEORV32-specific CSRs are mapped to the official "custom CSRs"
CSR address space.

Mandatory Zicsr Extension

The CSRs, the CSR-related instructions and the complete exception/interrupt
processing system are only available when the CPU_EXTENSION_RISCV_Zicsr
generic is true.

CSR Access Exception

When trying to write to a read-only CSR (like the time CSR) or when trying to
access a nonexistent CSR or when trying to access a machine-mode CSR from less-
privileged user-mode an illegal instruction exception is raised.

CSR Reset Value

Please note that most of the CSRs do NOT provide a dedicated reset. Hence, these
CSRs are not initialized by a hardware reset and provide an UNDEFINED value
until they are explicitly initialized by the software (normally, this is done by the
NEORV32-specific crt0.S start-up code). For more information see section CPU
Hardware Reset.

CSR Listing

The description of each single CSR provides the following summary:

Table 37. CSR description

Address Description ASM alias

Reset value: CSR content after hardware reset (also see CPU Hardware Reset)

Detailed description

Not Implemented CSRs / CSR Bits

All CSR bits that are unused / not implemented / not shown are hardwired to zero.
All CSRs that are not implemented at all (and are not "disabled" using certain
configuration generics) will trigger an exception on access. The CSR that are
implemented within the NEORV32 might cause an exception if they are disabled.
See the according CSR description for more information.

The NEORV32 Processor Visit on GitHub

148 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Debug Mode CSRs

The debug mode CSRs are not listed here since they are accessible only in debug
mode and not during normal CPU operation. See section CPU Debug Mode CSRs for
more information.

The NEORV32 RISC-V Processor Visit on GitHub

149 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

CSR Listing Notes

CSRs with the following notes …

• X: custom - have or are a custom CPU-specific extension (which is allowed by the RISC-V specs)

• R: read-only - are read-only (in contrast to the originally specified r/w capability)

• C: constrained - have a constrained compatibility, not all specified bits are implemented

Table 38. NEORV32 Control and Status Registers (CSRs)

Addres
s

Name [ASM] Name [C] R/
W

Function No
te

Floating-Point CSRs

0x001 fflags CSR_FFLAGS r/w Floating-point accrued exceptions

0x002 frm CSR_FRM r/w Floating-point dynamic rounding
mode

0x003 fcsr CSR_FCSR r/w Floating-point control and status (frm
+ fflags)

Machine Configuration CSRs

0x30a menvcfg CSR_MENVCFG r/- Machine environment configuration
register - low word

R

0x31a menvcfgh CSR_MENVCFGH r/- Machine environment configuration
register - low word

R

Machine Trap Setup CSRs

0x300 mstatus CSR_MSTATUS r/w Machine status register - low word C

0x301 misa CSR_MISA r/- Machine CPU ISA and extensions R

0x304 mie CSR_MIE r/w Machine interrupt enable register X

0x305 mtvec CSR_MTVEC r/w Machine trap-handler base address
(for ALL traps)

0x306 mcounteren CSR_MCOUNTEREN r/w Machine counter-enable register C

0x310 mstatush CSR_MSTATUSH r/- Machine status register - high word R

Machine Trap Handling CSRs

0x340 mscratch CSR_MSCRATCH r/w Machine scratch register

0x341 mepc CSR_MEPC r/w Machine exception program counter

0x342 mcause CSR_MCAUSE r/w Machine trap cause CX

0x343 mtval CSR_MTVAL r/- Machine bad address or instruction R

0x344 mip CSR_MIP r/w Machine interrupt pending register X

Machine Physical Memory Protection CSRs

The NEORV32 Processor Visit on GitHub

150 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Addres
s

Name [ASM] Name [C] R/
W

Function No
te

0x3a0 ..
0x3af

pmpcfg0 ..
pmpcfg3

CSR_PMPCFG0 ..
CSR_PMPCFG3

r/w Physical memory protection config.
for region 0..15

C

0x3b0 ..
0x3ef

pmpaddr0 ..
pmpaddr15

CSR_PMPADDR0 ..
CSR_PMPADDR15

r/w Physical memory protection addr.
register region 0..15

(Machine) Counter and Timer CSRs

0xb00 mcycle CSR_MCYCLE r/w Machine cycle counter low word

0xb02 minstret CSR_MINSTRET r/w Machine instruction-retired counter
low word

0xb80 mcycle[h] CSR_MCYCLE r/w Machine cycle counter high word

0xb82 minstret[h] CSR_MINSTRET r/w Machine instruction-retired counter
high word

0xc00 cycle CSR_CYCLE r/- Cycle counter low word

0xc01 time CSR_TIME r/- System time (from MTIME) low word

0xc02 instret CSR_INSTRET r/- Instruction-retired counter low word

0xc80 cycle[h] CSR_CYCLEH r/- Cycle counter high word

0xc81 time[h] CSR_TIMEH r/- System time (from MTIME) high word

0xc82 instret[h] CSR_INSTRETH r/- Instruction-retired counter high word

Hardware Performance Monitors (HPM) CSRs

0x323 ..
0x33f

mhpmevent3 ..
mhpmevent31

CSR_MHPMEVENT3 ..
CSR_MHPMEVENT31

r/w Machine performance-monitoring
event selector 3..31

X

0xb03 ..
0xb1f

mhpmcounter3 ..
mhpmcounter31

CSR_MHPMCOUNTER3
..
CSR_MHPMCOUNTER3
1

r/w Machine performance-monitoring
counter 3..31 low word

0xb83 ..
0xb9f

mhpmcounter3h ..
mhpmcounter31h

CSR_MHPMCOUNTER3
H ..
CSR_MHPMCOUNTER3
1H

r/w Machine performance-monitoring
counter 3..31 high word

Machine Counter Setup CSRs

0x320 mcountinhibit CSR_MCOUNTINHIBIT r/w Machine counter-enable register

Machine Information CSRs

0xf11 mvendorid CSR_MVENDORID r/- Vendor ID

0xf12 marchid CSR_MARCHID r/- Architecture ID

0xf13 mimpid CSR_MIMPID r/- Machine implementation ID / version

The NEORV32 RISC-V Processor Visit on GitHub

151 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Addres
s

Name [ASM] Name [C] R/
W

Function No
te

0xf14 mhartid CSR_MHARTID r/- Machine thread ID

0xf15 mconfigptr CSR_MCONFIGPTR r/- Machine configuration pointer
register

NEORV32-Specific CSRs

0xfc0 mxisa CSR_MXISA r/- NEORV32-specific "extended"
machine CPU ISA and extensions

X

The NEORV32 Processor Visit on GitHub

152 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.1. Floating-Point CSRs

These CSRs are available if the Zfinx extensions is enabled (CPU_EXTENSION_RISCV_Zfinx is true).
Otherwise any access to the floating-point CSRs will raise an illegal instruction exception.

fflags

0x001 Floating-point accrued exceptions fflags

Reset value: UNDEFINED

The fflags CSR is compatible to the RISC-V specifications. It shows the accrued ("accumulated")
exception flags in the lowest 5 bits. This CSR is only available if a floating-point CPU extension is
enabled. See the RISC-V ISA spec for more information.

frm

0x002 Floating-point dynamic rounding mode frm

Reset value: UNDEFINED

The frm CSR is compatible to the RISC-V specifications and is used to configure the rounding modes
using the lowest 3 bits. This CSR is only available if a floating-point CPU extension is enabled. See
the RISC-V ISA spec for more information.

fcsr

0x003 Floating-point control and status register fcsr

Reset value: UNDEFINED

The fcsr CSR is compatible to the RISC-V specifications. It provides combined read/write access to
the fflags and frm CSRs. This CSR is only available if a floating-point CPU extension is enabled. See
the RISC-V ISA spec for more information.

The NEORV32 RISC-V Processor Visit on GitHub

153 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9.2. Machine Configuration CSRs

menvcfg

0x30a Machine environment configuration register menvcfg

Reset value: 0x00000000

The features of this CSR are not implemented yet. The register is read-only. NOTE: This register
only exists if the U ISA extensions is enabled.

menvcfgh

0x31a Machine environment configuration register - high word menvcfgh

Reset value: 0x00000000

The features of this CSR are not implemented yet. The register is read-only. NOTE: This register
only exists if the U ISA extensions is enabled.

The NEORV32 Processor Visit on GitHub

154 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.3. Machine Trap Setup CSRs

mstatus

0x300 Machine status register mstatus

Reset value: 0x00000000

The mstatus CSR is compatible to the RISC-V specifications. It shows the CPU’s current execution
state. The following bits are implemented (all remaining bits are always zero and are read-only).

Table 39. Machine status register

Bit Name [C] R/W Function

21 CSR_MSTATUS_TW r/w TW: Disallows execution of wfi instruction in
user mode when set; hardwired to zero if user-
mode not implemented

12:11 CSR_MSTATUS_MPP_H :
CSR_MSTATUS_MPP_L

r/w *MPP: Previous machine privilege level, 11 =
machine (M) level, 00 = user (U) level

7 CSR_MSTATUS_MPIE r/w MPIE: Previous machine global interrupt enable
flag state

3 CSR_MSTATUS_MIE r/w MIE: Machine global interrupt enable flag

When entering an exception/interrupt, the MIE flag is copied to MPIE and cleared afterwards. When
leaving the exception/interrupt (via the mret instruction), MPIE is copied back to MIE.

misa

0x301 ISA and extensions misa

Reset value: defined

The misa CSR gives information about the actual CPU features. The lowest 26 bits show the
implemented CPU extensions. The following bits are implemented (all remaining bits are always
zero and are read-only).

The misa CSR is not fully RISC-V-compatible as it is read-only. Hence, implemented
CPU extensions cannot be switch on/off during runtime. For compatibility reasons
any write access to this CSR is simply ignored and will NOT cause an illegal
instruction exception.

Table 40. Machine ISA and extension register

Bit Name [C] R/W Function

31:30 CSR_MISA_MXL_HI_EXT :
CSR_MISA_MXL_LO_EXT

r/- MXL: 32-bit architecture indicator (always 01)

23 CSR_MISA_X_EXT r/- X: extension bit is always set to indicate custom
non-standard extensions

The NEORV32 RISC-V Processor Visit on GitHub

155 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [C] R/W Function

20 CSR_MISA_U_EXT r/- U: CPU extension (user mode) available, set
when CPU_EXTENSION_RISCV_U enabled

12 CSR_MISA_M_EXT r/- M: CPU extension (mul/div) available, set when
CPU_EXTENSION_RISCV_M enabled

8 CSR_MISA_I_EXT r/- I: CPU base ISA, cleared when
CPU_EXTENSION_RISCV_E enabled

4 CSR_MISA_E_EXT r/- E: CPU extension (embedded) available, set
when CPU_EXTENSION_RISCV_E enabled

2 CSR_MISA_C_EXT r/- C: CPU extension (compressed instruction)
available, set when CPU_EXTENSION_RISCV_C
enabled

Machine-mode software can discover available Z* sub-extensions (like Zicsr or
Zfinx) by checking the NEORV32-specific mxisa CSR.

mie

0x304 Machine interrupt-enable register mie

Reset value: UNDEFINED

The mie CSR is compatible to the RISC-V specifications and features custom extensions for the fast
interrupt channels. It is used to enabled specific interrupts sources. Please note that interrupts
also have to be globally enabled via the CSR_MSTATUS_MIE flag of the mstatus CSR. The following bits
are implemented (all remaining bits are always zero and are read-only):

Table 41. Machine ISA and extension register

Bit Name [C] R/W Function

31:16 CSR_MIE_FIRQ15E :
CSR_MIE_FIRQ0E

r/w Fast interrupt channel 15..0 enable

11 CSR_MIE_MEIE r/w MEIE: Machine external interrupt enable

7 CSR_MIE_MTIE r/w MTIE: Machine timer interrupt enable (from
MTIME)

3 CSR_MIE_MSIE r/w MSIE: Machine software interrupt enable

mtvec

0x305 Machine trap-handler base address mtvec

Reset value: UNDEFINED

The NEORV32 Processor Visit on GitHub

156 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The mtvec CSR is compatible to the RISC-V specifications. It stores the base address for ALL
machine traps. Thus, it defines the main entry point for exception/interrupt handling regardless of
the actual trap source. The lowest two bits of this register are always zero and cannot be modified
(= address mode only). Hence, the trap handler’s base address has to be aligned to a 4-byte
boundary.

Table 42. Machine trap-handler base address

Bit R/W Function

31:2 r/w BASE: 4-byte aligned base address of trap base handler

1:0 r/- MODE: Always zero; BASE defined entry for all traps

mcounteren

0x306 Machine counter enable mcounteren

Reset value: UNDEFINED

The mcounteren CSR is compatible to the RISC-V specifications. The bits of this CSR define which
counter/timer CSR can be accessed (read) from code running in a less-privileged modes. For
example, if user-level code tries to read from a counter/timer CSR without enabled access, an
illegal instruction exception is raised. NOTE: If the U ISA extension is not enabled this CSR does not
exist.

Table 43. Machine counter enable register

Bit Name [C] R/W Function

31:3 0 r/- Always zero: user-level code is not allowed to
read HPM counters

2 CSR_MCOUNTEREN_IR r/w IR: User-level code is allowed to read cycle[h]
CSRs when set

1 CSR_MCOUNTEREN_TM r/w TM: User-level code is allowed to read time[h]
CSRs when set

0 CSR_MCOUNTEREN_CY r/w CY: User-level code is allowed to read instret[h]
CSRs when set

HPM Access

Bits 3 to 31 are used to control user-level access to the Hardware Performance
Monitors (HPM) CSRs. In the NEORV32 CPU these bits are hardwired to zero.
Hence, user-level software cannot access the HPMs. Accordingly, the pmcounter*[h]
CSRs are not implemented and any access will raise an illegal instruction
exception.

mstatush

0x310 Machine status register - high word mstatush

The NEORV32 RISC-V Processor Visit on GitHub

157 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Reset value: 0x00000000

The mstatush CSR is compatible to the RISC-V specifications. In combination with mstatus it shows
additional execution state information. The NEORV32 mstatush CSR is read-only and all bits are
hardwired to zero.

The NEORV32 Processor Visit on GitHub

158 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.4. Machine Trap Handling CSRs

mscratch

0x340 Scratch register for machine trap handlers mscratch

Reset value: UNDEFINED

The mscratch CSR is compatible to the RISC-V specifications. It is a general purpose scratch register
that can be used by the exception/interrupt handler. The content pf this register after reset is
undefined.

mepc

0x341 Machine exception program counter mepc

Reset value: UNDEFINED

The mepc CSR is compatible to the RISC-V specifications. For exceptions (like an illegal instruction)
this register provides the address of the exception-causing instruction. For Interrupt (like a
machine timer interrupt) this register provides the address of the next not-yet-executed
instruction.

mcause

0x342 Machine trap cause mcause

Reset value: UNDEFINED

The mcause CSR is compatible to the RISC-V specifications. It show the cause ID for a taken
exception.

Table 44. Machine trap cause register

Bit R/W Function

31 r/w Interrupt: 1 if the trap is caused by an interrupt (0 if the trap is caused by an
exception)

30:5 r/- Reserved, read as zero

4:0 r/w Trap ID: see NEORV32 Trap Listing

mtval

0x343 Machine bad address or instruction mtval

Reset value: UNDEFINED

The mtval CSR is compatible to the RISC-V specifications. When a trap is triggered, the CSR shows
either the faulting address (for misaligned/faulting load/store/fetch) or the faulting (decompressed)
instruction word itself (for illegal instructions). For all other exceptions (including interrupts) the
CSR is set to zero.

The NEORV32 RISC-V Processor Visit on GitHub

159 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Table 45. Machine bad address or instruction register

Trap cause mtval content

misaligned instruction fetch address or
instruction fetch access fault

address of faulting instruction fetch

misaligned load address, load access fault,
misaligned store address or store access fault

program counter (= address) of faulting
instruction

illegal instruction actual instruction word of faulting instruction
(decoded 32-bit instruction word if caused by a

compressed instruction)

anything else including interrupts 0x00000000 (always zero)

The NEORV32 mtval CSR is read-only. However, a write access will NOT raise an
illegal instruction exception.

In case an invalid compressed instruction raised an illegal instruction exception,
mtval will show the according de-compressed instruction word. To get the "real"
16-bit instruction that caused the exception perform a memory load using the
address stored in mepc.

mip

0x344 Machine interrupt Pending mip

Reset value: 0x00000000

The mip CSR is compatible to the RISC-V specifications and also provides custom extensions. It
shows currently pending interrupts. The bits for the standard RISC-V interrupts are read-only.
Hence, these interrupts cannot be cleared using the mip register and must be
cleared/acknowledged within the according interrupt-generating device. The upper 16 bits
represent the status of the CPU’s fast interrupt request lines (FIRQ). Once triggered, these bit have
to be cleared manually by writing zero to the according mip bits (in the interrupt handler routine)
to clear the current interrupt request.

Table 46. Machine interrupt pending register

Bit Name [C] R/W Function

31:16 CSR_MIP_FIRQ15P :
CSR_MIP_FIRQ0P

r/c FIRQxP: Fast interrupt channel 15..0 pending;
cleared request by writing 1

11 CSR_MIP_MEIP r/- MEIP: Machine external interrupt pending;
cleared by user-defined mechanism

7 CSR_MIP_MTIP r/- MTIP: Machine timer interrupt pending; cleared
by incrementing MTIME’s time compare register

3 CSR_MIP_MSIP r/- MSIP: Machine software interrupt pending;
cleared by user-defined mechanism

The NEORV32 Processor Visit on GitHub

160 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

FIRQ Channel Mapping

See section NEORV32-Specific Fast Interrupt Requests for the mapping of the FIRQ
channels and the according interrupt-triggering processor module.

The NEORV32 RISC-V Processor Visit on GitHub

161 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9.5. Machine Physical Memory Protection CSRs

The available physical memory protection logic is configured via the PMP_NUM_REGIONS and
PMP_MIN_GRANULARITY top entity generics. PMP_NUM_REGIONS defines the number of
implemented protection regions and thus, the implementation of the available PMP entries. Each
PMP entry consists of an 8-bit pmpcfg CSR entry and a complete pmpaddr* CSR. See section PMP
Physical Memory Protection for more information.

If trying to access an PMP-related CSR beyond PMP_NUM_REGIONS no illegal
instruction exception is triggered. The according CSRs are read-only (writes are
ignored) and always return zero. However, any access beyond pmpcfg3 or
pmpaddr15, which are the last physically implemented registers if
PMP_NUM_REGIONS == 16, will raise an illegal instruction exception as these CSRs
are not implemented at all.

pmpcfg

0x3a0 -
0x3a3

Physical memory protection configuration registers pmpcfg0 - pmpcfg3

Reset value: 0x00000000

The pmpcfg* CSRs are compatible to the RISC-V specifications. They are used to configure the
protected regions, where each pmpcfg* CSR provides configuration bits for four regions (8-bit per
region). The actual number of available pmpcfg CSRs and CSR entries is defined by the
PMP_NUM_REGIONS generic.

Table 47. Physical memory protection configuration register layout (1 entry out of 4)

Bit Name [C] R/W Function

7 PMPCFG_L r/w L: Lock bit, prevents further write accesses, also enforces access
rights in machine-mode, can only be cleared by CPU reset

6:5 - r/- reserved, read as zero

4 PMPCFG_A_MSB r/- A: Mode configuration; only OFF (00) and TOR (01) modes are
supported, any other value will map back to OFF/TOR as the MSB is
hardwired to zero3 PMPCFG_A_LSB r/w

2 PMPCFG_X r/w X: Execute permission

1 PMPCFG_W r/w W: Write permission

0 PMPCFG_R r/w R: Read permission

Setting the lock bit L only locks the according PMP entry and not the PMP entries
below!

The NEORV32 Processor Visit on GitHub

162 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

pmpaddr

0x3b0 -
0x3bf

Physical memory protection address registers pmpaddr0 -
pmpaddr15

Reset value: UNDEFINED

The pmpaddr* CSRs are compatible to the RISC-V specifications. They are used to configure bits 33:2
of the PMP region’s physical memory address. The actual number of available pmpaddr CSRs is
defined by the PMP_NUM_REGIONS generic.

Table 48. Physical memory protection address register layout

Bit R/W Function

31:30 r/- Hardwired to zero

29 : log2(PMP_MIN_GRANULARITY)-
2

r/w Bits 31 downto
log2(PMP_MIN_GRANULARITY) of the
region’s address

log2(PMP_MIN_GRANULARITY)-2 : 0 r/- Hardwired to zero

When configuring the PMP make sure to set pmpaddr* before activating the
according region via pmpcfg*. When changing the PMP configuration, deactivate
the according region via pmpcfg* before modifying pmpaddr*.

The NEORV32 RISC-V Processor Visit on GitHub

163 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9.6. (Machine) Counter and Timer CSRs

The (machine) counters and timers are implemented when the Zicntr ISA extensions is enabled
(default) via the CPU_EXTENSION_RISCV_Zicntr generic.

The CPU_CNT_WIDTH generic defines the total size of the CPU’s cycle[h] and
instret[h] / mcycle[h] and minstret[h] counter CSRs (low and high words
combined); the time CSRs are not affected by this generic. Note that any
configuration with CPU_CNT_WIDTH less than 64 is not RISC-V compliant.

Effective CPU counter width ([m]cycle & [m]instret)

If CPU_CNT_WIDTH is less than 64 (the default value) and greater than or equal 32,
the according MSBs of [m]cycleh and [m]instreth are read-only and always read as
zero. This configuration will also set the CSR_MXISA_ZXSCNT flag ("small
counters") in the mxisa CSR.

If CPU_CNT_WIDTH is less than 32 and greater than 0, the [m]cycleh and
[m]instreth CSRs are hardwired to zero and any write access to them is ignored.
Furthermore, the according MSBs of [m]cycle and [m]instret are read-only and
always read as zero. This configuration will also set the CSR_MXISA_ZXSCNT flag
("small counters") in the mxisa CSR.

If CPU_CNT_WIDTH is 0, the cycle[h] and instret[h] / mcycle[h] and minstret[h]
CSRs are hardwired to zero and any write access to them is ignored.

Counter Increment During Debugging

The [m]cycle[h] and [m]instret[h] counters do not increment when the CPU is in
debug mode. See section CPU Debug Mode for more information.

cycle[h]

0xc00 Cycle counter - low word cycle

0xc80 Cycle counter - high word cycleh

Reset value: UNDEFINED

The cycle[h] CSR is compatible to the RISC-V specifications. It shows the lower/upper 32-bit of the
64-bit cycle counter. The cycle[h] CSR is a read-only shadowed copy of the mcycle[h] CSR.

time[h]

0xc01 System time - low word time

0xc81 System time - high word timeh

Reset value: UNDEFINED

The NEORV32 Processor Visit on GitHub

164 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The time[h] CSR is compatible to the RISC-V specifications. It shows the lower/upper 32-bit of the
64-bit system time. The system time is either generated by the processor-internal MTIME system
timer unit (if IO_MTIME_EN = true) or can be provided by an external timer unit via the
processor’s mtime_i signal (if IO_MTIME_EN = false). CSR is read-only. Change the system time via
the MTIME unit.

instret[h]

0xc02 Instructions-retired counter - low word instret

0xc82 Instructions-retired counter - high word instreth

Reset value: UNDEFINED

The instret[h] CSR is compatible to the RISC-V specifications. It shows the lower/upper 32-bit of
the 64-bit retired instructions counter. The instret[h] CSR is a read-only shadowed copy of the
minstret[h] CSR.

mcycle[h]

0xb00 Machine cycle counter - low word mcycle

0xb80 Machine cycle counter - high word mcycleh

Reset value: UNDEFINED

The mcycle[h] CSR is compatible to the RISC-V specifications. It shows the lower/upper 32-bit of the
64-bit cycle counter. The mcycle[h] CSR can also be written when in machine mode and is mirrored
to the cycle[h] CSR.

minstret[h]

0xb02 Machine instructions-retired counter - low word minstret

0xb82 Machine instructions-retired counter - high word minstreth

Reset value: UNDEFINED

The minstret[h] CSR is compatible to the RISC-V specifications. It shows the lower/upper 32-bit of
the 64-bit retired instructions counter. The minstret[h] CSR also be written when in machine mode
and is mirrored to the instret[h] CSR.

The NEORV32 RISC-V Processor Visit on GitHub

165 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9.7. Hardware Performance Monitors (HPM) CSRs

The hardware performance monitor CSRs are implemented when the Zihpm ISA extension is
enabled via the CPU_EXTENSION_RISCV_Zihpm generic.

The actual number of implemented hardware performance monitors is configured via the
HPM_NUM_CNTS top entity generic, Note that always all 28 HPM counter and configuration
registers (mhpmcounter*[h] and mhpmevent*) are implemented, but only the actually configured ones
are implemented as "real" physical registers - the remaining ones will be hardwired to zero.

If trying to access an HPM-related CSR beyond HPM_NUM_CNTS no illegal instruction exception
is triggered. These CSRs are read-only (writes are ignored) and always return zero.

Access Privilege

The HPM system only allows machine-mode access. Hence, hpmcounter*[h] CSR are
not implemented and any access (even from machine mode) will raise an illegal
instruction exception. Furthermore, the according bits of mcounteren used to
configure user-mode access to hpmcounter*[h] are hardwired to zero.

The total counter width of the HPMs can be configured before synthesis via the HPM_CNT_WIDTH
generic (0..64-bit). If HPM_NUM_CNTS is less than 64, all remaining MSB-aligned bits are hardwired
to zero.

HPM Counter Overflow

HPM counters do not saturate and will overflow (restarting at zero).

Counter Increment

All HPM counters do not increment when the CPU is either in debug-mode (see
section CPU Debug Mode for more information) or when the CPU is in sleep-mode.

mhpmevent

0x232
-0x33f

Machine hardware performance monitor event selector mhpmevent3 -
mhpmevent31

Reset value: UNDEFINED

The mhpmevent* CSRs are compatible to the RISC-V specifications. The value in these CSRs define the
architectural events that cause an increment of the according mhpmcounter*[h] counter(s). All
available events are listed in the table below. If more than one event is selected, the according
counter will increment if any of the enabled events is observed (logical OR). Note that the counter
will only increment by 1 step per clock cycle even if more than one trigger event is observed.

Table 49. HPM Event Select

Bit Name [C] R/W Event

0 HPMCNT_EVENT_CY r/w active clock cycle (CPU not in sleep mode)

The NEORV32 Processor Visit on GitHub

166 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [C] R/W Event

1 - r/- not implemented, always read as zero

2 HPMCNT_EVENT_IR r/w retired instruction (compressed or
uncompressed)

3 HPMCNT_EVENT_CIR r/w retired compressed instruction

4 HPMCNT_EVENT_WAIT_IF r/w instruction fetch memory wait cycle: if more
than 1 cycle memory latency, cache miss or high
bus traffic

5 HPMCNT_EVENT_WAIT_II r/w instruction issue pipeline wait cycle: if more
than 1 cycle latency, pipelines flush (like taken
branches) / cache miss or high bus traffic

6 HPMCNT_EVENT_WAIT_MC r/w multi-cycle ALU operation wait cycle (like
iterative shift operation)

7 HPMCNT_EVENT_LOAD r/w memory data load operation

8 HPMCNT_EVENT_STORE r/w memory data store operation

9 HPMCNT_EVENT_WAIT_LS r/w load/store memory wait cycle: if more than 1
cycle memory latency or high bus traffic

10 HPMCNT_EVENT_JUMP r/w unconditional jump

11 HPMCNT_EVENT_BRANCH r/w conditional branch (taken or not taken)

12 HPMCNT_EVENT_TBRANCH r/w taken conditional branch

13 HPMCNT_EVENT_TRAP r/w entered trap (synchronous exception or
interrupt)

14 HPMCNT_EVENT_ILLEGAL r/w illegal instruction exception

Cache Misses

A miss in the instruction cache will cause an automatic reload of the referenced
memory block from main memory. Fetching this block takes several cycles -
depending on the configured cache block size and the general memory system
throughput. This will introduce instruction fetch wait cycles
(HPMCNT_EVENT_WAIT_IF) since the CPU front end has to wait for the cache to
finish loading. Furthermore, this will also introduce instruction issue wait cycles
(HPMCNT_EVENT_WAIT_II) as the CPU execution core is waiting for new
instructions from the font end.

mhpmcounter[h]

0xb03 -
0xb1f

Machine hardware performance monitor - counter low mhpmcounter3 -
mhpmcounter31

The NEORV32 RISC-V Processor Visit on GitHub

167 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

0xb83 -
0xb9f

Machine hardware performance monitor - counter high mhpmcounter3h -
mhpmcounter31h

Reset value: UNDEFINED

The mhpmcounter*[h] CSRs are compatible to the RISC-V specifications. These CSRs provide the
lower/upper 32- bit of arbitrary event counters. The event(s) that trigger an increment of theses
counters are selected via the according mhpmevent* CSRs bits.

The NEORV32 Processor Visit on GitHub

168 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.8. Machine Counter Setup CSRs

mcountinhibit

0x320 Machine counter-inhibit register mcountinhibit

Reset value: UNDEFINED

The mcountinhibit CSR is compatible to the RISC-V specifications. The bits in this register define
which counter/timer CSR are allowed to perform an automatic increment. Automatic update is
enabled if the according bit in mcountinhibit is cleared. The following bits are implemented (all
remaining bits are always zero and are read-only).

Table 50. Machine counter-inhibit register

Bit Name [C] R/W Event

0 CSR_MCOUNTINHIBIT_IR r/w IR: The [m]instret[h] CSRs will auto-increment
with each committed instruction when set

2 CSR_MCOUNTINHIBIT_CY r/w CY: The [m]cycle[h] CSRs will auto-increment
with each clock cycle (if CPU is not in sleep state)
when set

3:31 CSR_MCOUNTINHIBIT_HPM
3 :
CSR_MCOUNTINHIBIT_HPM
31

r/w HPMx: The mhpmcount*[h] CSRs will auto-
increment according to the configured
mhpmevent* selector

The NEORV32 RISC-V Processor Visit on GitHub

169 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9.9. Machine Information CSRs

All machine information registers can only be accessed in machine mode and are
read-only.

mvendorid

0xf11 Machine vendor ID mvendorid

Reset value: 0x00000000

The mvendorid CSR is compatible to the RISC-V specifications. It is read-only and always reads zero.

marchid

0xf12 Machine architecture ID marchid

Reset value: 0x00000013

The marchid CSR is compatible to the RISC-V specifications. It is read-only and shows the NEORV32
official RISC-V open-source architecture ID (decimal: 19, 32-bit hexadecimal: 0x00000013).

mimpid

0xf13 Machine implementation ID mimpid

Reset value: defined

The mimpid CSR is compatible to the RISC-V specifications. It is read-only and shows the version of
the NEORV32 as BCD-coded number (example: mimpid = 0x01020312 → 01.02.03.12 → version
1.2.3.12).

mhartid

0xf14 Machine hardware thread ID mhartid

Reset value: defined

The mhartid CSR is compatible to the RISC-V specifications. It is read-only and shows the core’s hart
ID, which is assigned via the CPU’s HW_THREAD_ID generic.

mconfigptr

0xf15 Machine configuration pointer register mconfigptr

Reset value: 0x00000000

This register holds a physical address (if not zero) that points to the base address of an
architecture configuration structure. Software can traverse this data structure to discover
information about the harts, the platform, and their configuration. NOTE: Not assigned yet.

The NEORV32 Processor Visit on GitHub

170 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.10. NEORV32-Specific CSRs

All NEORV32-specific CSRs are mapped to addresses that are explicitly reserved for
custom Machine-Mode, read-only CSRs (assured by the RISC-V privileged
specifications). Hence, these CSRs can only be accessed when in machine-mode.
Any access outside of machine-mode will raise an illegal instruction exception.

mxisa

0x7c0 Machine EXTENDED ISA and Extensions register mxisa

Reset value: defined

NEORV32-specific read-only CSR that helps machine-mode software to discover Z* sub-extensions
and CPU options.

Table 51. Machine EXTENDED ISA and Extensions register bits

Bit Name [C] R/W Function

31 CSR_MXISA_FASTSHIFT r/- fast shifts available when set (via top’s
FAST_SHIFT_EN generic)

30 CSR_MXISA_FASTMUL r/- fast multiplication available when set (via top’s
FAST_MUL_EN generic)

31:22 - r/- reserved, read as zero

21 CSR_MXISA_HW_RESET r/- set if a dedicated hardware reset of all core
registers is implemented (via package’s
dedicated_reset_c constant)

20 CSR_MXISA_IS_SIM r/- set if CPU is being simulated (⚠️ not guaranteed)

19:11 - r/- reserved, read as zero

10 CSR_MXISA_DEBUGMODE r/- RISC-V CPU debug_mode available when set (via
top’s ON_CHIP_DEBUGGER_EN generic)

9 CSR_MXISA_ZIHPM r/- Zihpm (hardware performance monitors)
extension available when set (via top’s
CPU_EXTENSION_RISCV_Zihpm generic)

8 CSR_MXISA_PMP r/- PMP` (physical memory protection) extension
available when set (via top’s
PMP_NUM_REGIONS generic)

7 CSR_MXISA_ZICNTR r/- Zicntr extension (I sub-extension) available
when set - [m]cycle, [m]instret and [m]time CSRs
available when set (via top’s
CPU_EXTENSION_RISCV_Zicntr generic)

The NEORV32 RISC-V Processor Visit on GitHub

171 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [C] R/W Function

6 CSR_MXISA_ZXSCNT r/- Custom extension - Small CPU counters: [m]cycle
& [m]instret CSRs have less than 64-bit when set
(via top’s CPU_CNT_WIDTH generic)

5 CSR_MXISA_ZFINX r/- Zfinx extension (F sub-/alternative-extension:
FPU using x registers) available when set (via
top’s CPU_EXTENSION_RISCV_Zfinx generic)

4 - r/- reserved, read as zero

3 CSR_MXISA_ZXCFU r/- Zxcfu extension (custom functions unit for
custom RISC-V instructions) available when set
(via top’s CPU_EXTENSION_RISCV_Zxcfu generic)

2 CSR_MXISA_ZMMUL r/- Zmmul extension (M sub-extension) available
when set (via top’s
CPU_EXTENSION_RISCV_Zmmul generic)

1 CSR_MXISA_ZIFENCEI r/- Zifencei extension (I sub-extension) available
when set (via top’s
CPU_EXTENSION_RISCV_Zifencei generic)

0 CSR_MXISA_ZICSR r/- Zicsr extension (I sub-extension) available
when set (via top’s
CPU_EXTENSION_RISCV_Zicsr generic)

The NEORV32 Processor Visit on GitHub

172 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.11. Traps, Exceptions and Interrupts

In this document the following nomenclature regarding traps is used:

• interrupts = asynchronous exceptions

• exceptions = synchronous exceptions

• traps = exceptions + interrupts (synchronous or asynchronous exceptions)

Whenever an exception or interrupt is triggered, the CPU transfers control to the address stored in
mtvec CSR. The cause of the according interrupt or exception can be determined via the content of
mcause CSR. The address that reflects the current program counter when a trap was taken is stored
to mepc CSR. Additional information regarding the cause of the trap can be retrieved from mtval CSR
and the processor’s Internal Bus Monitor (BUSKEEPER) (for memory access exceptions)

The traps are prioritized. If several synchronous exceptions occur at once only the one with highest
priority is triggered while all remaining exceptions are ignored. If several asynchronous exceptions
(interrupts) trigger at once, the one with highest priority is serviced first while the remaining ones
stay pending. After completing the interrupt handler the interrupt with the second highest priority
will get serviced and so on until no further interrupts are pending.

Interrupt Signal Requirements - Standard RISC-V Interrupts

All standard RISC-V interrupts request signals are high-active. A request has to
stay at high-level (=asserted) until it is explicitly acknowledged by the CPU
software (for example by writing to a specific memory-mapped register).

Interrupt Signal Requirements - Fast Interrupt Requests

The NEORV32-specific FIRQ request lines are triggered by a one-shot high-level (i.e.
rising edge). Each request is buffered in the CPU control unit until the channel is
either disabled (by clearing the according mie CSR bit) or the request is explicitly
cleared (by writing zero to the according mip CSR bit).

Instruction Atomicity

All instructions execute as atomic operations - interrupts can only trigger between
two instructions. So even if there is a permanent interrupt request, exactly one
instruction from the interrupt program will be executed before another interrupt
handler can start. This allows program progress even if there are permanent
interrupt requests.

Memory Access Exceptions

If a load operation causes any exception, the instruction’s destination register is not written at all.
Load exceptions caused by a misalignment or a physical memory protection fault do not trigger a
bus/memory read-operation at all. Vice versa, exceptions caused by a store address misalignment
or a store physical memory protection fault do not trigger a bus/memory write-operation at all.

The NEORV32 RISC-V Processor Visit on GitHub

173 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Custom Fast Interrupt Request Lines

As a custom extension, the NEORV32 CPU features 16 fast interrupt request (FIRQ) lines via the
firq_i CPU top entity signals. These interrupts have custom configuration and status flags in the mie
and mip CSRs and also provide custom trap codes in mcause. These FIRQs are reserved for NEORV32
processor-internal usage only.

NEORV32 Trap Listing

The following table shows all traps that are currently supported by the NEORV32 CPU. It also shows
the prioritization and the CSR side-effects. A more detailed description of the actual trap triggering
events is provided in a further table.

Asynchronous exceptions (= interrupts) set the MSB of mcause while synchronous
exception (= "software exception") clear the MSB.

Table Annotations

The "Prio." column shows the priority of each trap. The highest priority is 1. The “mcause” column
shows the cause ID of the according trap that is written to mcause CSR. The "[RISC-V]" columns show
the interrupt/exception code value from the official RISC-V privileged architecture spec. The "ID [C]"
names are defined by the NEORV32 core library (the runtime environment RTE) and can be used in
plain C code. The “mepc” and “mtval” columns show the value written to mepc and mtval CSRs when
a trap is triggered:

• IPC - address of interrupted instruction (instruction has not been executed yet)

• PC - address of instruction that caused the trap

• ADR - bad memory access address that caused the trap

• INST - the faulting instruction word itself

• 0 - zero

Table 52. NEORV32 Trap Listing

Prio. mcause [RISC-V] ID [C] Cause mepc mtval

Synchronous Exceptions

1 0x00000000 0.0 TRAP_CODE_I_MISALIGNED instruction address
misaligned

PC ADR

2 0x00000001 0.1 TRAP_CODE_I_ACCESS instruction access bus
fault

PC ADR

3 0x00000002 0.2 TRAP_CODE_I_ILLEGAL illegal instruction PC INST

4 0x0000000B 0.11 TRAP_CODE_MENV_CALL environment call
from M-mode (ecall)

PC 0

5 0x00000008 0.8 TRAP_CODE_UENV_CALL environment call
from U-mode (ecall)

PC 0

The NEORV32 Processor Visit on GitHub

174 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Prio. mcause [RISC-V] ID [C] Cause mepc mtval

6 0x00000003 0.3 TRAP_CODE_BREAKPOINT software breakpoint
(ebreak)

PC 0

7 0x00000006 0.6 TRAP_CODE_S_MISALIGNED store address
misaligned

PC ADR

8 0x00000004 0.4 TRAP_CODE_L_MISALIGNED load address
misaligned

PC ADR

9 0x00000007 0.7 TRAP_CODE_S_ACCESS store access bus fault PC ADR

10 0x00000005 0.5 TRAP_CODE_L_ACCESS load access bus fault PC ADR

Asynchronous Exceptions (Interrupts)

11 0x80000010 1.16 TRAP_CODE_FIRQ_0 fast interrupt request
channel 0

IPC 0

12 0x80000011 1.17 TRAP_CODE_FIRQ_1 fast interrupt request
channel 1

IPC 0

13 0x80000012 1.18 TRAP_CODE_FIRQ_2 fast interrupt request
channel 2

IPC 0

14 0x80000013 1.19 TRAP_CODE_FIRQ_3 fast interrupt request
channel 3

IPC 0

15 0x80000014 1.20 TRAP_CODE_FIRQ_4 fast interrupt request
channel 4

IPC 0

16 0x80000015 1.21 TRAP_CODE_FIRQ_5 fast interrupt request
channel 5

IPC 0

17 0x80000016 1.22 TRAP_CODE_FIRQ_6 fast interrupt request
channel 6

IPC 0

18 0x80000017 1.23 TRAP_CODE_FIRQ_7 fast interrupt request
channel 7

IPC 0

19 0x80000018 1.24 TRAP_CODE_FIRQ_8 fast interrupt request
channel 8

IPC 0

20 0x80000019 1.25 TRAP_CODE_FIRQ_9 fast interrupt request
channel 9

IPC 0

21 0x8000001a 1.26 TRAP_CODE_FIRQ_10 fast interrupt request
channel 10

IPC 0

22 0x8000001b 1.27 TRAP_CODE_FIRQ_11 fast interrupt request
channel 11

IPC 0

23 0x8000001c 1.28 TRAP_CODE_FIRQ_12 fast interrupt request
channel 12

IPC 0

24 0x8000001d 1.29 TRAP_CODE_FIRQ_13 fast interrupt request
channel 13

IPC 0

The NEORV32 RISC-V Processor Visit on GitHub

175 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Prio. mcause [RISC-V] ID [C] Cause mepc mtval

25 0x8000001e 1.30 TRAP_CODE_FIRQ_14 fast interrupt request
channel 14

IPC 0

26 0x8000001f 1.31 TRAP_CODE_FIRQ_15 fast interrupt request
channel 15

IPC 0

27 0x8000000B 1.11 TRAP_CODE_MEI machine external
interrupt (MEI)

IPC 0

28 0x80000003 1.3 TRAP_CODE_MSI machine software
interrupt (MSI)

IPC 0

29 0x80000007 1.7 TRAP_CODE_MTI machine timer
interrupt (MTI)

IPC 0

The following table provides a summarized description of the actual events for triggering a specific
trap.

Table 53. NEORV32 Trap Description

Trap ID [C] Triggered when …

TRAP_CODE_I_MISALIGNED fetching a 32-bit instruction word that is not 32-bit-aligned (see note
below!)

TRAP_CODE_I_ACCESS bus timeout or bus error during instruction word fetch

TRAP_CODE_I_ILLEGAL trying to execute an invalid instruction word (malformed or not
supported) or on a privilege violation

TRAP_CODE_MENV_CALL executing ecall instruction in machine-mode

TRAP_CODE_UENV_CALL executing ecall instruction in user-mode

TRAP_CODE_BREAKPOINT executing ebreak instruction

TRAP_CODE_S_MISALIGNED storing data to an address that is not naturally aligned to the data
size (byte, half, word) being stored

TRAP_CODE_L_MISALIGNED loading data from an address that is not naturally aligned to the data
size (byte, half, word) being loaded

TRAP_CODE_S_ACCESS bus timeout or bus error during load data operation

TRAP_CODE_L_ACCESS bus timeout or bus error during store data operation

TRAP_CODE_FIRQ_0 …
TRAP_CODE_FIRQ_15

caused by interrupt-condition of processor-internal modules, see
NEORV32-Specific Fast Interrupt Requests

TRAP_CODE_MEI user-defined processor-external source (via dedicated top-entity
signal)

TRAP_CODE_MSI user-defined processor-external source (via dedicated top-entity
signal)

The NEORV32 Processor Visit on GitHub

176 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Trap ID [C] Triggered when …

TRAP_CODE_MTI processor-internal machine timer overflow OR user-defined
processor-external source (via dedicated top-entity signal)

Misaligned Instruction Address Exception

For 32-bit-only instructions (= no C extension) the misaligned instruction exception
is raised if bit 1 of the fetch address is set (i.e. not on a 32-bit boundary). If the C
extension is implemented there will never be a misaligned instruction exception at
all. In both cases bit 0 of the program counter (and all related CSRs) is hardwired
to zero.

The NEORV32 RISC-V Processor Visit on GitHub

177 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

3.9.12. Bus Interface

The NEORV32 CPU implements a 32-bit machine with separated instruction and data interfaces
making the CPU a Harvard Architecture: the instruction fetch interface (i_bus_*) is used for
fetching instructions and the data access interface (d_bus_*) is used to access data via load and store
operations. Each of this interfaces can access an address space of up to 232 bytes (4GB). The
following table shows the signals of the data and instruction interfaces as seen from the CPU (*_o
signals are driven by the CPU / outputs, *_i signals are read by the CPU / inputs). Both interfaces use
the same protocol.

Table 54. CPU bus interfaces ()

Signal Width Directio
n

Description

i/d_bus_addr_o 32 out access address

i/d_bus_rdata_i 32 in data input for read operations

d_bus_wdata_o 32 out data output for write operations

d_bus_ben_o 4 out byte enable signal for write operations

d_bus_we_o 1 out bus write access request (one-shot)

i/d_bus_re_o 1 out bus read access request (one-shot)

i/d_bus_ack_i 1 in accessed peripheral indicates a successful completion of
the bus transaction

i/d_bus_err_i 1 in accessed peripheral indicates an error during the bus
transaction

i/d_bus_fence_o 1 out this signal is set for one cycle when the CPU executes an
instruction/data fence operation

Pipelined Transfers

Currently, there a no pipelined or overlapping operations implemented within the
same bus interface. So only a single transfer request can be "on the fly" (pending)
at once. However, this is no real drawback. The minimal possible latency for a
single access is two cycles, which equals the CPU’s minimal execution latency for a
single instruction.

Unaligned Memory Accesses

Please note, that the NEORV32 CPU does not support the handling of unaligned
memory accesses in hardware. Any unaligned memory access will raise an
exception that can can be used to handle such accesses in software.

Protocol

An actual bus request is triggered either by the *_bus_re_o signal (for reading data) or by the
*_bus_we_o signal (for writing data). In case of a request, one of these signals is high for exactly one

The NEORV32 Processor Visit on GitHub

178 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

cycle. The transaction is completed when the accessed peripheral/memory either sets the
*_bus_ack_i signal (→ successful completion) or the *_bus_err_i signal (→ failed completion). These
bus response signal are also set only for one cycle active. An error indicated by the *_bus_err_i
signal will raise the according "instruction bus access fault" or "load/store bus access fault"
exception.

Minimal Response Latency

The transfer can be completed directly in the same cycle as it was initiated (via the *_bus_re_o or
*_bus_we_o signal) if the peripheral sets *_bus_ack_i or *_bus_err_i high for one cycle. However, in
order to shorten the critical path such "asynchronous" completion should be avoided. The default
NEORV32 processor-internal modules provide exactly one cycle delay between initiation and
completion of transfers.

Maximal Response Latency

Processor-internal peripherals or memories do not have to respond within one cycle after a bus
request has been initiated. However, the bus transaction has to be completed (= acknowledged)
within a certain response time window. This time window is defined by the global
max_proc_int_response_time_c constant (default = 15 cycles; processor’s VHDL package file
rtl/neorv32_package.vhd). It defines the maximum number of cycles after which an unacknowledged
(*bus_ack_i or *_bus_err_i signal from the processor-internal bus both not set) processor-
internal bus transfer will time out and raises a bus fault exception. The Internal Bus Monitor
(BUSKEEPER) keeps track of all _internal bus transactions to enforce this time window.

If any bus operations times out (for example when accessing "address space holes") the BUSKEEPER
will issue a bus error to the CPU that will raise the according instruction fetch or data access bus
exception. Note that the bus keeper does not track external accesses via the external memory
bus interface. However, the external memory bus interface also provides an optional bus timeout
(see section Processor-External Memory Interface (WISHBONE) (AXI4-Lite)).

Interface Response

Please note that any CPU access via the data or instruction interface has to be
terminated either by asserting the CPU’s *_bus_ack_i` or *_bus_err_i signal.
Otherwise the CPU will be stalled permanently. The BUSKEEPER ensures that any
kind of access is always properly terminated.

Exemplary Bus Accesses

Table 55. Example bus accesses: see read/write access description below

The NEORV32 RISC-V Processor Visit on GitHub

179 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Read access Write access

Write Access

For a write access, the access address (bus_addr_o), the data to be written (bus_wdata_o) and the byte
enable signals (bus_ben_o) are set when bus_we_o goes high. These three signals are kept stable until
the transaction is completed. In the example the accessed peripheral cannot answer directly in the
next cycle after issuing. Here, the transaction is successful and the peripheral sets the bus_ack_i
signal several cycles after issuing.

Read Access

For a read access, the accessed address (bus_addr_o) is set when bus_re_o goes high. The address is
kept stable until the transaction is completed. In the example the accessed peripheral cannot
answer directly in the next cycle after issuing. The peripheral hast to apply the read data right in
the same cycle as the bus transaction is completed (here, the transaction is successful and the
peripheral sets the bus_ack_i signal).

Access Boundaries

The instruction interface will always access memory on word (= 32-bit) boundaries even if fetching
compressed (16-bit) instructions. The data interface can access memory on byte (= 8-bit), half-word
(= 16- bit) and word (= 32-bit) boundaries.

Memory Barriers

Whenever the CPU executes a fence instruction, the according interface signal is set high for one
cycle (d_bus_fence_o for a fence instruction; i_bus_fence_o for a fencei instruction). It is the task of
the memory system to perform the necessary operations (for example a cache flush and refill).

The NEORV32 Processor Visit on GitHub

180 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

3.9.13. CPU Hardware Reset

In order to reduce routing constraints (and by this the actual hardware requirements), most
uncritical registers of the NEORV32 CPU as well as most register of the whole NEORV32 Processor
do not use a dedicated hardware reset. "Uncritical registers" in this context means that the initial
value of these registers after power-up is not relevant for a defined CPU boot process.

Rationale

A good example to illustrate the concept of uncritical registers is a pipelined processing engine.
Each stage of the engine features an N-bit data register and a 1-bit status register. The status
register is set when the data in the according data register is valid. At the end of the pipeline the
status register might trigger a write-back of the processing result to some kind of memory. The
initial status of the data registers after power-up is irrelevant as long as the status registers are all
reset to a defined value that indicates there is no valid data in the pipeline’s data register.
Therefore, the pipeline data register do no require a dedicated reset as they do not control the
actual operation (in contrast to the status register). This makes the pipeline data registers from this
example "uncritical registers".

NEORV32 CPU Reset

In terms of the NEORV32 CPU, there are several pipeline registers, state machine registers and even
status and control registers (CSRs) that do not require a defined initial state to ensure a correct boot
process. The pipeline register will get initialized by the CPU’s internal state machines, which are
initialized from the main control engine that actually features a defined reset. The initialization of
most of the CPU’s core CSRs (like interrupt control) is done by the software (to be more specific, this
is done by the crt0.S start-up code).

During the very early boot process (where crt0.S is running) there is no chance for undefined
behavior due to the lack of dedicated hardware resets of certain CSRs. For example the machine
interrupt-enable CSR mie does not provide a dedicated reset. The value after reset of this register is
uncritical as interrupts cannot fire because the global interrupt enabled flag in the status register
(mstatsus(mie)) do provide a dedicated hardware reset setting this bit to low (globally disabling
interrupts).

Reset Configuration

Most CPU-internal register do provide an asynchronous reset in the VHDL code, but the "don’t care"
value (VHDL '-') is used for initialization of all uncritical registers, effectively generating a flip-flop
without a reset. However, certain applications or situations (like advanced gate-level / timing
simulations) might require a more deterministic reset state. For this case, a defined reset level
(reset-to-low) of all CPU registers can be enabled by enabling a constant in the main VHDL package
file (rtl/core/neorv32_package.vhd):

The NEORV32 RISC-V Processor Visit on GitHub

181 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

-- use dedicated hardware reset value for UNCRITICAL registers --
-- FALSE=reset value is irrelevant (might simplify HW), default; TRUE=defined LOW
reset value
constant dedicated_reset_c : boolean := false;

[5] If the Zicsr CPU extension is enabled (implementing the full set of the privileged architecture).

[6] Shift amount.

[7] Barrel shift when FAST_SHIFT_EN is enabled.

[8] Serial shift when TINY_SHIFT_EN is enabled.

[9] Shift amount (0..31).

[10] Barrel shifter when FAST_SHIFT_EN is enabled.

[11] Memory latency.

[12] DSP-based multiplication; enabled via FAST_MUL_EN.

The NEORV32 Processor Visit on GitHub

182 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 4. Software Framework
To make actual use of the NEORV32 processor, the project comes with a complete software
ecosystem. This ecosystem is based on the RISC-V port of the GCC GNU Compiler Collection and
consists of the following elementary parts:

• Compiler Toolchain

• Core Libraries

• Application Makefile

• Executable Image Format

◦ Linker Script

◦ RAM Layout

◦ C Standard Library

◦ Start-Up Code (crt0)

• Bootloader

• NEORV32 Runtime Environment

A summarizing list of the most important elements of the software framework and their according
files and folders is shown below:

Application start-up code sw/common/crt0.S

Application linker script sw/common/neorv32.ld

Core hardware driver libraries ("HAL") sw/lib/include/ & sw/lib/source/

Central application makefile sw/common/common.mk

Tool for generating NEORV32 executables sw/image_gen/

Default bootloader sw/bootloader/bootloader.c

Example programs sw/example

Software Documentation

All core libraries and example programs are highly documented using Doxygen.
The documentation is automatically built and deployed to GitHub pages and is
available online at https://stnolting.github.io/neorv32/sw/files.html.

Example Programs

A collection of annotated example programs, which show how to use certain CPU
functions and peripheral/IO modules, can be found in sw/example.

The NEORV32 RISC-V Processor Visit on GitHub

183 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/sw/files.html
https://github.com/stnolting/neorv32

4.1. Compiler Toolchain
The toolchain for this project is based on the free RISC-V GCC-port. You can find the compiler
sources and build instructions on the official RISC-V GNU toolchain GitHub page: https://github.com/
riscv/riscv-gnutoolchain.

The NEORV32 implements a 32-bit RISC-V architecture and uses a 32-bit integer and soft-float ABI
by default. Make sure the toolchain / toolchain build is configured accordingly.

• MARCH=rv32i

• MABI=ilp32

Alternatively, you can download my prebuilt rv32i/e toolchains for 64-bit x86 Linux from:
https://github.com/stnolting/riscv-gcc-prebuilt

The default toolchain prefix used by the project’s makefiles is riscv32-unknown-elf, which can be
changes using makefile flags at any time.

More information regarding the toolchain (building from scratch or downloading
the prebuilt ones) can be found in the user guides' section Software Toolchain
Setup.

The NEORV32 Processor Visit on GitHub

184 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/riscv/riscv-gnutoolchain
https://github.com/riscv/riscv-gnutoolchain
https://github.com/stnolting/riscv-gcc-prebuilt
https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup
https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup
https://github.com/stnolting/neorv32

4.2. Core Libraries
The NEORV32 project provides a set of C libraries that allows an easy usage of the processor/CPU
features (also called "HAL" - hardware abstraction layer). All driver and runtime-related files are
located in sw/lib. These are automatically included and linked by adding the following include
statement:

#include <neorv32.h> // add NEORV32 HAL, core and runtime libraries

C source file C header file Description

- neorv32.h main NEORV32 definitions and library file

neorv32_cfs.c neorv32_cfs.h HW driver (stubs) functions for the custom
functions subsystem [13]

neorv32_cpu.c neorv32_cpu.h HW driver functions for the NEORV32 CPU

neorv32_cpu_cfu.c neorv32_cpu_cfu.h HW driver functions for the NEORV32 CFU (custom
instructions)

neorv32_gpio.c neorv32_gpio.h HW driver functions for the GPIO

neorv32_gptmr.c neorv32_gptmr.h HW driver functions for the GPTRM

- neorv32_intrinsics.h macros for custom intrinsics & instructions

neorv32_mtime.c neorv32_mtime.h HW driver functions for the MTIME

neorv32_neoled.c neorv32_neoled.h HW driver functions for the NEOLED

neorv32_pwm.c neorv32_pwm.h HW driver functions for the PWM

neorv32_rte.c neorv32_rte.h NEORV32 runtime environment and helper
functions

neorv32_slink.c neorv32_slink.h HW driver functions for the SLINK

neorv32_spi.c neorv32_spi.h HW driver functions for the SPI

neorv32_trng.c neorv32_trng.h HW driver functions for the TRNG

neorv32_twi.c neorv32_twi.h HW driver functions for the TWI

neorv32_uart.c neorv32_uart.h HW driver functions for the UART0 and UART1

neorv32_wdt.c neorv32_wdt.h HW driver functions for the WDT

neorv32_xip.c neorv32_xip.h HW driver functions for the XIP

neorv32_xirq.c neorv32_xirq.h HW driver functions for the XIRQ

syscalls.c - newlib system calls

The NEORV32 RISC-V Processor Visit on GitHub

185 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Core Library Documentation

The doxygen-based documentation of the software framework including all core
libraries is available online at https://stnolting.github.io/neorv32/sw/files.html.

CMSIS System View Description File (SVD)

A CMSIS-SVD-compatible System View Description (SVD) file including all
peripherals is available in sw/svd.

The NEORV32 Processor Visit on GitHub

186 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/sw/files.html
https://github.com/stnolting/neorv32

4.3. Application Makefile
Application compilation is based on a single, centralized GNU makefiles sw/common/common.mk. Each
project in the sw/example folder features a makefile that just includes this central makefile. When
creating a new project copy an existing project folder or at least the makefile to the new project
folder. It is suggested to create new projects also in sw/example to keep the file dependencies.
However, these dependencies can be manually configured via makefiles variables when the new
project is located somewhere else.

Before the makefile can be used to compile applications, the RISC-V GCC toolchain
needs to be installed. Furthermore, the bin folder of the compiler needs to be
added to the system’s PATH variable. More information can be found in User Guide:
Software Toolchain Setup.

The makefile is invoked by simply executing make in the console. For example:

neorv32/sw/example/blink_led$ make

4.3.1. Targets

Just executing make (or executing make help) will show the help menu listing all available targets.

The NEORV32 RISC-V Processor Visit on GitHub

187 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup
https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup
https://github.com/stnolting/neorv32

$ make
<<< NEORV32 SW Application Makefile >>>
Make sure to add the bin folder of RISC-V GCC to your PATH variable.

== Targets ==
 help - show this text
 check - check toolchain
 info - show makefile/toolchain configuration
 exe - compile and generate <neorv32_exe.bin> executable for upload via
bootloader
 hex - compile and generate <neorv32_exe.hex> executable raw file
 image - compile and generate VHDL IMEM boot image (for application) in local
folder
 install - compile, generate and install VHDL IMEM boot image (for application)
 sim - in-console simulation using default/simple testbench and GHDL
 all - exe + hex + install
 elf_info - show ELF layout info
 clean - clean up project
 clean_all - clean up project, core libraries and image generator
 bl_image - compile and generate VHDL BOOTROM boot image (for bootloader only!) in
local folder
 bootloader - compile, generate and install VHDL BOOTROM boot image (for bootloader
only!)

== Variables ==
 USER_FLAGS - Custom toolchain flags [append only], default ""
 EFFORT - Optimization level, default "-Os"
 MARCH - Machine architecture, default "rv32i"
 MABI - Machine binary interface, default "ilp32"
 APP_INC - C include folder(s) [append only], default "-I ."
 ASM_INC - ASM include folder(s) [append only], default "-I ."
 RISCV_PREFIX - Toolchain prefix, default "riscv32-unknown-elf-"
 NEORV32_HOME - NEORV32 home folder, default "../../.."

4.3.2. Configuration

The compilation flow is configured via variables right at the beginning of the central makefile
(sw/common/common.mk):

The makefile configuration variables can be overridden or extended directly when
invoking the makefile. For example $ make MARCH=rv32ic clean_all exe overrides
the default MARCH variable definitions. Permanent modifications/definitions can be
made in the project-local makefile (e.g., sw/example/blink_led/makefile).

The NEORV32 Processor Visit on GitHub

188 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Listing 7. Default Makefile Configuration

USER CONFIGURATION

User's application sources (*.c, *.cpp, *.s, *.S); add additional files here
APP_SRC ?= $(wildcard ./*.c) $(wildcard ./*.s) $(wildcard ./*.cpp) $(wildcard ./*.S)
User's application include folders (don't forget the '-I' before each entry)
APP_INC ?= -I .
User's application include folders - for assembly files only (don't forget the '-I'
before each
entry)
ASM_INC ?= -I .
Optimization
EFFORT ?= -Os
Compiler toolchain
RISCV_PREFIX ?= riscv32-unknown-elf-
CPU architecture and ABI
MARCH ?= rv32i
MABI ?= ilp32
User flags for additional configuration (will be added to compiler flags)
USER_FLAGS ?=
Relative or absolute path to the NEORV32 home folder
NEORV32_HOME ?= ../../..

Table 56. Variables Description

APP_SRC The source files of the application (.c, .cpp, .S and .s files are allowed;
files of these types in the project folder are automatically added via wild
cards). Additional files can be added separated by white spaces

APP_INC Include file folders; separated by white spaces; must be defined with -I
prefix

ASM_INC Include file folders that are used only for the assembly source files (.S/.s).

EFFORT Optimization level, optimize for size (-Os) is default; legal values: -O0, -O1,
-O2, -O3, -Os, -Ofast, …

RISCV_PREFIX The toolchain prefix to be used; follows the triplet naming convention
[architecture]-[host_system]-[output]-…

MARCH The targeted RISC-V architecture/ISA; enable compiler support of optional
CPU extension by adding the according extension name (e.g. rv32im for M
CPU extension; see User Guide: Enabling RISC-V CPU Extensions for more
information

MABI Application binary interface (default: 32-bit integer ABI ilp32)

USER_FLAGS Additional flags that will be forwarded to the compiler tools

The NEORV32 RISC-V Processor Visit on GitHub

189 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_enabling_risc_v_cpu_extensions
https://github.com/stnolting/neorv32

NEORV32_HOME Relative or absolute path to the NEORV32 project home folder; adapt this if
the makefile/project is not in the project’s default sw/example folder

4.3.3. Default Compiler Flags

The following default compiler flags are used for compiling an application. These flags are defined
via the CC_OPTS variable. Custom flags can be appended to it using the USER_FLAGS variable.

-Wall Enable all compiler warnings.

-ffunction-sections Put functions and data segment in independent sections. This allows a
code optimization as dead code and unused data can be easily removed.

-nostartfiles Do not use the default start code. Instead, use the NEORV32-specific start-
up code (sw/common/crt0.S).

-Wl,--gc-sections Make the linker perform dead code elimination.

-lm Include/link with math.h.

-lc Search for the standard C library when linking.

-lgcc Make sure we have no unresolved references to internal GCC library
subroutines.

-mno-fdiv Use built-in software functions for floating-point divisions and square
roots (since the according instructions are not supported yet).

-falign-functions=4 Force a 32-bit alignment of functions and labels (branch/jump/call
targets). This increases performance as it simplifies instruction fetch
when using the C extension. As a drawback this will also slightly increase
the program code.

-falign-labels=4

-falign-loops=4

-falign-jumps=4

The NEORV32 Processor Visit on GitHub

190 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

4.4. Executable Image Format
In order to generate a file, which can be executed by the processor, all source files have to be
compiler, linked and packed into a final executable.

4.4.1. Linker Script

When all the application sources have been compiled, they need to be linked in order to generate a
unified program file. For this purpose the makefile uses the NEORV32-specific linker script
sw/common/neorv32.ld for linking all object files that were generated during compilation.

The linker script defines three memory sections: rom, ram and iodev. Each section provides specific
access attributes: read access (r), write access (w) and executable (x).

Table 57. Linker memory sections - general

Memory section Attribut
es

Description

ram rwx Data memory address space (processor-internal/external DMEM)

rom rx Instruction memory address space (processor-internal/external
IMEM) or internal bootloader ROM

iodev rw Processor-internal memory-mapped IO/peripheral devices address
space

These sections are defined right at the beginning of the linker script:

Listing 8. Linker memory sections - cut-out from linker script neorv32.ld

MEMORY
{
 ram (rwx) : ORIGIN = 0x80000000, LENGTH = DEFINED(make_bootloader) ? 512 : 8*1024
 rom (rx) : ORIGIN = DEFINED(make_bootloader) ? 0xFFFF0000 : 0x00000000, LENGTH =
DEFINED(make_bootloader) ? 32K : 2048M
 iodev (rw) : ORIGIN = 0xFFFFFE00, LENGTH = 512
}

Each memory section provides a base address ORIGIN and a size LENGTH. The base address and size of
the iodev section is fixed and should not be altered. The base addresses and sizes of the ram and rom
regions correspond to the total available instruction and data memory address space (see section
Address Space Layout) as defined in rtl/core/neorv32_package.vhd.

ORIGIN of the ram section has to be always identical to the processor’s dspace_base_c
hardware configuration.

ORIGIN of the rom section has to be always identical to the processor’s ispace_base_c
hardware configuration.

The NEORV32 RISC-V Processor Visit on GitHub

191 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

The sizes of rom section is a little bit more complicated. The default linker script configuration
assumes a maximum of 2GB logical memory space, which is also the default configuration of the
processor’s hardware instruction memory address space. This size does not have to reflect the
actual physical size of the instruction memory (internal IMEM and/or processor-external memory).
It just provides a maximum limit. When uploading new executable via the bootloader, the
bootloader itself checks if sufficient physical instruction memory is available. If a new executable is
embedded right into the internal-IMEM the synthesis tool will check, if the configured instruction
memory size is sufficient (e.g., via the MEM_INT_IMEM_SIZE generic).

The rom region uses a conditional assignment (via the make_bootloader symbol) for
ORIGIN and LENGTH that is used to place "normal executable" (i.e. for the IMEM) or
"the bootloader image" to their according memories.

The ram region also uses a conditional assignment (via the make_bootloader symbol)
for LENGTH. When compiling the bootloader (make_bootloader symbol is set) the
generated bootloader will only use the first 512 bytes of the data address space.
This is a fall-back to ensure the bootloader can operate independently of the actual
physical data memory size.

The linker maps all the regions from the compiled object files into five final sections: .text, .rodata,
.data, .bss and .heap. These regions contain everything required for the application to run:

Table 58. Linker memory regions

Region Description

.text Executable instructions generated from the start-up code and all application sources.

.rodata Constants (like strings) from the application; also the initial data for initialized variables.

.data This section is required for the address generation of fixed (= global) variables only.

.bss This section is required for the address generation of dynamic memory constructs only.

.heap This section is required for the address generation of dynamic memory constructs only.

The .text and .rodata sections are mapped to processor’s instruction memory space and the .data,
.bss and heap sections are mapped to the processor’s data memory space. Finally, the .text, .rodata
and .data sections are extracted and concatenated into a single file main.bin.

Section Alignment

The default NEORV32 linker script aligns all section so they start and end on a 32-
bit (word) boundary. The default NEORV32 start-up code (crt0) makes use of this
alignment by using word-level memory instruction to initialize the .data section
and to clear the .bss section.

4.4.2. RAM Layout

The default NEORV32 linker script uses all of the defined RAM (linker script memory section ram) to

The NEORV32 Processor Visit on GitHub

192 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

create four areas. Note that depending on the application some areas might not be existent at all.

Figure 10. Default RAM Layout

1. Constant data (.data): The constant data section is placed right at the beginning of the RAM.
For example, this section contains explicitly initialized global variables. This section is initialized
by the executable.

2. Dynamic data (.bss): The constant data section is followed by the dynamic data section, which
contains uninitialized data like global variables without explicit initialization. This section is
cleared by the start-up code crt0.S.

3. Heap (.heap): The heap is used for dynamic memory that is managed by functions like malloc()
and free(). The heap grows upwards. This section is not initialized at all.

4. Stack: The stack starts at the very end of the RAM at address ORIGIN(ram) + LENGTH(ram) - 4.
The stack grows downwards.

There is no explicit limit for the maximum stack size as this is hard to check. However, a physical
memory protection rule could be used to configure a maximum size by adding a "protection area"
between stack and heap (a PMP region without any access rights).

The maximum size of the heap is defined by the linker script’s __heap_size symbol. This symbol can
be overridden at any time. By default, the maximum heap size is 1/4 of the total RAM size.

Heap-Stack Collisions

Take care when using dynamic memory to avoid collision of the heap and stack
memory areas. There is no compile-time protection mechanism available as the
actual heap and stack size are defined by runtime data. Also beware of
fragmentation when using dynamic memory allocation.

4.4.3. C Standard Library

The NEORV32 is a processor for embedded applications, which is not capable of running desktop
OSs like Linux (at least not without emulation). Hence, the default software framework relies on
newlib as default C standard library.

The NEORV32 RISC-V Processor Visit on GitHub

193 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

RTOS Support

The NEORV32 CPU and processor do support embedded RTOS like FreeRTOS and
Zephyr. See the User guide section Zephyr RTOS Support and FreeRTOS Support for
more information.

Newlib provides stubs for common "system calls" (like file handling and standard input/output) that
are used by other C libraries like stdio. These stubs are available in sw/source/syscalls.c and were
adapted for the NEORV32 processor.

Standard Console(s)

UART0 is used to implement all the standard input, output and error consoles
(STDIN, STDOUT and STDERR).

Constructors and Destructors

Constructors and destructors for plain C code or for C++ applications are
supported by the software framework. See sw/example/hellp_cpp for a minimal
example.

Newlib Test/Demo Program

A simple test and demo program, which uses some of newlib’s core functions (like
malloc/free and read/write) is available in sw/example/demo_newlib

4.4.4. Executable Image Generator

The main.bin file is packed by the NEORV32 image generator (sw/image_gen) to generate the final
executable file.

The sources of the image generator are automatically compiled when invoking the
makefile.

The image generator can generate three types of executables, selected by a flag when calling the
generator:

-app_bin Generates an executable binary file neorv32_exe.bin (for UART uploading via the
bootloader).

-app_hex Generates a plain ASCII hex-char file neorv32_exe.hex that can be used to initialize
custom (instruction-) memories (in synthesis/simulation).

-app_img Generates an executable VHDL memory initialization image for the processor-internal
IMEM. This option generates the rtl/core/neorv32_application_image.vhd file.

-bld_img Generates an executable VHDL memory initialization image for the processor-internal
BOOT ROM. This option generates the rtl/core/neorv32_bootloader_image.vhd file.

All these options are managed by the makefile. The normal application compilation flow will

The NEORV32 Processor Visit on GitHub

194 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/ug/#_zephyr_rtos_support
https://stnolting.github.io/neorv32/ug/#_freertos_support
https://github.com/stnolting/neorv32

generate the neorv32_exe.bin executable to be upload via UART to the NEORV32 bootloader.

The image generator add a small header to the neorv32_exe.bin executable, which consists of three
32-bit words located right at the beginning of the file. The first word of the executable is the
signature word and is always 0x4788cafe. Based on this word the bootloader can identify a valid
image file. The next word represents the size in bytes of the actual program image in bytes. A
simple "complement" checksum of the actual program image is given by the third word. This
provides a simple protection against data transmission or storage errors.

4.4.5. Start-Up Code (crt0)

The CPU and also the processor require a minimal start-up and initialization code to bring the CPU
(and the SoC) into a stable and initialized state and to initialize the C runtime environment before
the actual application can be executed. This start-up code is located in sw/common/crt0.S and is
automatically linked every application program and placed right before the actual application code
so it gets executed right after reset.

The crt0.S start-up performs the following operations:

1. Disable interrupts globally by clearing mstatus`.mie`.

2. Initialize all integer registers x1 - x31 (or just x1 - x15 when using the E CPU extension) to a
defined value.

3. Initialize all CPU core CSRs and also install a default "dummy" trap handler for all exceptions.

◦ All interrupt sources are disabled and all pending interrupts are cleared.

4. Initialize the global pointer gp and the stack pointer sp according to the RAM Layout provided
by the linker script. during the early boot phase.

5. Clear all counter CSRs and stop auto-increment.

6. Clear IO area: Write zero to all memory-mapped registers within the IO region (iodev section)
resetting all IO/peripheral modules. This step can be disabled by the user; see note below. If
certain devices have not been implemented, a bus access fault exception will occur, which is
captured by the dummy trap handler.

7. Clear the .bss section defined by the linker script.

8. Copy read-only data from the .text section to the .data section to set initialized variables.

9. Call and execute all constructors (if there are any)

10. Call the application’s main function (with no arguments: argc = argv = 0).

11. If the main function returns…

◦ interrupts are globally disabled by clearing mstatus`.mie`.

◦ the return value is copied to the mscratch CSR to allow inspection by the on-chip debugger.

◦ call and execute all destructors (if there are any).

◦ an optional After-Main Handler is called (if defined at all).

◦ the CPU enters sleep mode (using the wfi instruction) or halts in an endless loop (if wfi

The NEORV32 RISC-V Processor Visit on GitHub

195 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

"returns").

Disabling automatic software reset of all IO/peripheral devices during executable boot

The automatic "software reset" performed by the crt0 start-up code can be
manually disabled. This can be handy for certain executables, which are booted by
a (custom) bootloader and rely on certain IO initializations performed by the
bootloader. To disable the automatic reset of all IO/peripheral modules the
NO_IO_RESET symbol needs to be defined before compilation using the makefile’s
USER_FLAGS variable. Furthermore, all object files need to be recompiled using the
clean_all target. Example: $ make USER_FLAGS+=-DNO_IO_RESET clean_all exe

Bootloader Start-Up Code

The bootloader uses the same start-up code as any "usual" application. However,
certain parts are omitted when compiling crt0 for the bootloader (like calling
constructors and destructors). See the crt0 source code for more information.

After-Main Handler

If the application’s main() function actually returns, an after main handler can be executed. This
handler is a "normal" function as the C runtime is still available when executed. If this handler uses
any kind of peripheral/IO modules make sure these are already initialized within the application.
Otherwise you have to initialize them inside the handler.

Listing 9. After-main handler - function prototype

void __neorv32_crt0_after_main(int32_t return_code);

The function has exactly one argument (return_code) that provides the return value of the
application’s main function. For instance, this variable contains -1 if the main function returned
with return -1;. The after-main handler itself does not provide a return value.

A simple UART output can be used to inform the user when the application’s main function returns
(this example assumes that UART0 has been already properly configured in the actual application):

Listing 10. After-main handler - simple example

void __neorv32_crt0_after_main(int32_t return_code) {

 neorv32_uart0_printf("\n<RTE> main function returned with exit code %i. </RTE>\n",
return_code); ①
}

① Use <RTE> here to make clear this is a message comes from the runtime environment.

The after-main handler is executed after executing all destructor functions (if
there are any at all).

The NEORV32 Processor Visit on GitHub

196 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

4.5. Bootloader

This section refers to the default bootloader from the repository. The bootloader
can be customized to target application-specific scenarios using pre-defined
options (see User Guide section Customizing the Internal Bootloader) or it can be
completely rewritten/replaced for custom purpose.

The NEORV32 bootloader (source code sw/bootloader/bootloader.c) provides an optional build-in
firmware that allows to upload new application executables at any time without the need to re-
synthesize the FPGA’s bitstream. A UART connection is used to provide a simple text-based user
interface that allows to upload executables.

Furthermore, the bootloader provides options to store an executable to a processor-external SPI
flash. An "auto boot" feature can optionally fetch this executable right after reset if there is no user
interaction via UART. This allows to build processor setups with non-volatile application storage,
which can still be updated at any time.

4.5.1. Bootloader SoC/CPU Requirements

The bootloader relies on certain CPU and SoC extensions and modules to be enabled to allo full
functionality.

REQUIRED The bootloader is implemented only if the INT_BOOTLOADER_EN is true
(default). This will automatically select the CPU’s Indirect Boot boot
configuration.

REQUIRED The bootloader requires the privileged architecture CPU extension (Zicsr
Control and Status Register Access / Privileged Architecture) to be enabled.

REQUIRED At least 512 bytes of data memory (processor-internal DMEM or processor-
external DMEM) are required for the bootloader’s stack.

RECOMMENDED For user interaction via UART (like uploading executables) the primary UART
(Primary Universal Asynchronous Receiver and Transmitter (UART0)) has to
be implemented. Without UART0 the auto-boot via SPI is still supported but the
bootloader should be customized (see User Guide).

RECOMMENDED The default bootloader uses bit 0 of the General Purpose Input and Output Port
(GPIO) output port to drive a high-active "heart beat" status LED.

RECOMMENDED The Machine System Timer (MTIME) is used to control blinking of the status
LED and also to automatically trigger the auto-boot sequence.

OPTIONAL The SPI controller (Serial Peripheral Interface Controller (SPI)) is needed to
store/load executable from external flash (for the auto boot feature).

4.5.2. Bootloader Flash Requirements

The bootloader can access an SPI-compatible flash via the processor’s top entity SPI port. By default,

The NEORV32 RISC-V Processor Visit on GitHub

197 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://github.com/stnolting/neorv32

the flash chip-select line is driven by spi_csn_o(0) and the SPI clock uses 1/8 of the processor’s main
clock as clock frequency. The SPI flash has to support single-byte read and write operations, 24-bit
addresses and at least the following standard commands:

• 0x03: Read data

• 0x04: Write disable (for volatile status register)

• 0x05: Read (first) status register

• 0x06: Write enable (for volatile status register)

• 0x02: Page program

• 0xD8: Block erase (64kB)

Custom Configuration

Most properties (like chip select line, flash address width, SPI clock frequency, …)
of the default bootloader can be reconfigured without the need to change the
source code. Custom configuration can be made using command line switches
when recompiling the bootloader. See the User Guide https://stnolting.github.io/
neorv32/ug/#_customizing_the_internal_bootloader for more information.

Known-Good Chips

Compatible (FGPA configuration) SPI flash memories are for example the
"Winbond W25Q64FV2 or the "Micron N25Q032A".

4.5.3. Bootloader Console

To interact with the bootloader, connect the primary UART (UART0) signals (uart0_txd_o and
uart0_rxd_o) of the processor’s top entity via a serial port (-adapter) to your computer (hardware
flow control is not used so the according interface signals can be ignored.), configure your terminal
program using the following settings and perform a reset of the processor.

Terminal console settings (19200-8-N-1):

• 19200 Baud

• 8 data bits

• no parity bit

• 1 stop bit

• newline on \r\n (carriage return, newline)

• no transfer protocol / control flow protocol - just raw bytes

The NEORV32 Processor Visit on GitHub

198 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://github.com/stnolting/neorv32

Any terminal program that can connect to a serial port should work. However,
make sure the program can transfer data in raw byte mode without any protocol
overhead (e.g. XMODEM). Some terminal programs struggle with transmitting files
larger than 4kB (see https://github.com/stnolting/neorv32/pull/215). Try a different
terminal program if uploading of a binary does not work.

The bootloader uses the LSB of the top entity’s gpio_o output port as high-active status LED. Aall
other output pin are set to low level and won’t be altered. After reset, this LED will start blinking at
~2Hz and the following intro screen should show up in the terminal:

<< NEORV32 Bootloader >>

BLDV: Feb 16 2022
HWV: 0x01060709
CLK: 0x05f5e100
ISA: 0x40901107 + 0xc000068b
SOC: 0x7b7f402f
IMEM: 0x00008000 bytes @0x00000000
DMEM: 0x00004000 bytes @0x80000000

Autoboot in 8s. Press any key to abort.

The start-up screen gives some brief information about the bootloader and several system
configuration parameters:

BLDV Bootloader version (built date).

HWV Processor hardware version (the mimpid CSR); in BCD format; example: 0x01040606 =
v1.4.6.6).

CLK Processor clock speed in Hz (via the CLK register from System Configuration
Information Memory (SYSINFO); defined by the CLOCK_FREQUENCY generic).

ISA CPU extensions (misa CSR + mxisa CSR).

SOC Processor configuration (via the SOC register from the System Configuration
Information Memory (SYSINFO); mainly defined by the IO_* and MEM_* configuration
generics).

IMEM IMEM memory base address and size in byte (via the IMEM_SIZE and ISPACE_BASE
registers from the System Configuration Information Memory (SYSINFO); defined by
the MEM_INT_IMEM_SIZE generic).

DMEM DMEM memory base address and size in byte (via the DMEM_SIZE and DSPACE_BASE
registers from the System Configuration Information Memory (SYSINFO); defined by
the MEM_INT_DMEM_SIZE generic).

Now you have 8 seconds to press any key. Otherwise, the bootloader starts the Auto Boot Sequence.
When you press any key within the 8 seconds, the actual bootloader user console starts:

The NEORV32 RISC-V Processor Visit on GitHub

199 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32/pull/215
https://github.com/stnolting/neorv32

<< NEORV32 Bootloader >>

BLDV: Feb 16 2022
HWV: 0x01060709
CLK: 0x05f5e100
ISA: 0x40901107 + 0xc000068b
SOC: 0x7b7f402f
IMEM: 0x00008000 bytes @0x00000000
DMEM: 0x00004000 bytes @0x80000000

Autoboot in 8s. Press any key to abort.
Aborted. ①

Available commands:
 h: Help
 r: Restart
 u: Upload
 s: Store to flash
 l: Load from flash
 e: Execute
CMD:>

① Auto boot sequence aborted due to user console input.

The auto boot countdown is stopped and the bootloader’s user console is ready to receive one of the
following commands:

• h: Show the help text (again)

• r: Restart the bootloader and the auto-boot sequence

• u: Upload new program executable (neorv32_exe.bin) via UART into the instruction memory

• s: Store executable to SPI flash at spi_csn_o(0) (little-endian byte order)

• l: Load executable from SPI flash at spi_csn_o(0) (little-endian byte order)

• e: Start the application, which is currently stored in the instruction memory (IMEM)

A new executable can be uploaded via UART by executing the u command. After that, the
executable can be directly executed via the e command. To store the recently uploaded executable
to an attached SPI flash press s. To directly load an executable from the SPI flash press l. The
bootloader and the auto-boot sequence can be manually restarted via the r command.

The CPU is in machine level privilege mode after reset. When the bootloader boots
an application, this application is also started in machine level privilege mode.

For detailed information on using an SPI flash for application storage see User
Guide section Programming an External SPI Flash via the Bootloader.

The NEORV32 Processor Visit on GitHub

200 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/ug/#_programming_an_external_spi_flash_via_the_bootloader
https://github.com/stnolting/neorv32

4.5.4. Auto Boot Sequence

When you reset the NEORV32 processor, the bootloader waits 8 seconds for a UART console input
before it starts the automatic boot sequence. This sequence tries to fetch a valid boot image from
the external SPI flash, connected to SPI chip select spi_csn_o(0). If a valid boot image is found that
can be successfully transferred into the instruction memory, it is automatically started. If no SPI
flash is detected or if there is no valid boot image found, and error code will be shown.

4.5.5. Bootloader Error Codes

If something goes wrong during bootloader operation, an error code and a short message is shown.
In this case the processor stalls,, the bootloader status LED is permanently activated and the
processor must be reset manually.

In many cases the error source is just temporary (like some HF spike during an
UART upload). Just try again.

ERROR_0 If you try to transfer an invalid executable (via UART or from the external SPI
flash), this error message shows up. There might be a transfer protocol
configuration error in the terminal program. Also, if no SPI flash was found
during an auto-boot attempt, this message will be displayed.

ERROR_1 Your program is way too big for the internal processor’s instructions memory.
Increase the memory size or reduce your application code.

ERROR_2 This indicates a checksum error. Something went wrong during the transfer of
the program image (upload via UART or loading from the external SPI flash). If
the error was caused by a UART upload, just try it again. When the error was
generated during a flash access, the stored image might be corrupted.

ERROR_3 This error occurs if the attached SPI flash cannot be accessed. Make sure you
have the right type of flash and that it is properly connected to the NEORV32
SPI port using chip select #0.

ERROR - Unexpected
exception!

The bootloader encountered an exception during operation. This might be
caused when it tries to access peripherals that were not implemented during
synthesis. Example: executing commands l or s (SPI flash operations) without
the SPI module being implemented.

The NEORV32 RISC-V Processor Visit on GitHub

201 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

4.6. NEORV32 Runtime Environment
The NEORV32 software framework provides a minimal runtime environment (RTE) that takes care
of a stable and safe execution environment by handling all traps (= exceptions & interrupts). The
RTE simplifies trap handling by wrapping the CPU’s privileged architecture (i.e. trap-related CSRs)
into a unified software API. The NEORV32 RTE is a software library (sw/lib/source/neorv32_rte.c)
that is part of the default processor library set. It provides public functions via
sw/lib/include/neorv32_rte.h for application interaction.

Once initialized, the RTE provides Default RTE Trap Handlers that catch all possible exceptions.
These default handlers just output a message via UART to inform the user when a certain trap has
been triggered. The default handlers can be overridden by the application code to install
application-specific handler functions for each trap.

Using the RTE is optional but highly recommended. The RTE provides a simple
and comfortable way of delegating traps to application-specific handlers while
making sure that all traps (even though they are not explicitly used by the
application) are handled correctly. Performance-optimized applications or
embedded operating systems should not use the RTE for delegating traps.

For the C standard runtime library see section [c_standard_library].

4.6.1. RTE Operation

The RTE handles the trap-related CSRs of the CPU’s privileged architecture (Machine Trap Handling
CSRs). It initializes the mtvec CSR, which provides the base entry point for all trap handlers. The
address stored to this register reflects the first-level exception handler, which is provided by the
NEORV32 RTE. Whenever an exception or interrupt is triggered this first-level handler is executed.

The first-level handler performs a complete context save, analyzes the source of the
exception/interrupt and calls the according second-level exception handler, which takes care of
the actual exception/interrupt handling. For this, the RTE manages a private look-up table to store
the addresses of the according trap handlers.

After the initial RTE setup, each entry in the RTE’s trap handler’s look-up table is initialized with a
Default RTE Trap Handlers. These default handler do not execute any trap-related operations - they
just output a message via the primary UART (UART0) to inform the user that a trap has occurred,
that is not handled by the actual application. After sending this message, the RTE tries to continue
executing the user program.

4.6.2. Using the RTE

The NEORV32 is enabled by calling the RTE’s setup function:

The NEORV32 Processor Visit on GitHub

202 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Listing 11. Function Prototype: RTE Setup

void neorv32_rte_setup(void);

The RTE should be enabled right at the beginning of the application’s main
function.

As mentioned above, all traps will only trigger execution of the RTE’s Default RTE Trap Handlers. To
use application-specific handlers, which actually handle a trap, the default handlers can be
overridden by installing user-defined ones:

Listing 12. Function Prototype: Installing an Application-Specific Trap Handler

int neorv32_rte_exception_install(uint8_t id, void (*handler)(void));

The first argument id defines the "trap ID" (for example a certain interrupt request) that shall be
handled by the user-defined handler. The second argument *handler is the actual function that
implements the trap handler. The function return zero on success and a non-zero value if an error
occurred (invalid id). In this case no modifications to the RTE’s trap look-up-table will be made.

The custom handler functions need to have a specific format without any arguments an with no
return value:

Listing 13. Function Prototype: Custom Trap Handler

void custom_trap_handler_xyz(void) {

 // handle exception/interrupt...
}

Custom Trap Handler Attributes

Do NOT use the interrupt attribute for the application exception handler
functions! This will place a mret instruction to the end of it making it impossible to
return to the first-level exception handler of the RTE core, which will cause stack
corruption.

The trap identifier id specifies the according trap cause. These can be an asynchronous trap like an
interrupt from one of the processor modules or a synchronous trap triggered by software-caused
events like an illegal instruction or an environment call instruction. The
sw/lib/include/neorv32_rte.h library files provides aliases for trap events supported by the CPU
(see NEORV32 Trap Listing) that can be used when installing custom trap handler functions:

Table 59. RTE Trap ID List

The NEORV32 RISC-V Processor Visit on GitHub

203 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

ID alias [C] Description / trap causing event

RTE_TRAP_I_MISALIGNED instruction address misaligned

RTE_TRAP_I_ACCESS instruction (bus) access fault

RTE_TRAP_I_ILLEGAL illegal instruction

RTE_TRAP_BREAKPOINT breakpoint (ebreak instruction)

RTE_TRAP_L_MISALIGNED load address misaligned

RTE_TRAP_L_ACCESS load (bus) access fault

RTE_TRAP_S_MISALIGNED store address misaligned

RTE_TRAP_S_ACCESS store (bus) access fault

RTE_TRAP_MENV_CALL environment call from machine mode (ecall instruction)

RTE_TRAP_UENV_CALL environment call from user mode (ecall instruction)

RTE_TRAP_MTI machine timer interrupt

RTE_TRAP_MEI machine external interrupt

RTE_TRAP_MSI machine software interrupt

RTE_TRAP_FIRQ_0 fast interrupt channel 0

RTE_TRAP_FIRQ_1 fast interrupt channel 1

RTE_TRAP_FIRQ_2 fast interrupt channel 2

RTE_TRAP_FIRQ_3 fast interrupt channel 3

RTE_TRAP_FIRQ_4 fast interrupt channel 4

RTE_TRAP_FIRQ_5 fast interrupt channel 5

RTE_TRAP_FIRQ_6 fast interrupt channel 6

RTE_TRAP_FIRQ_7 fast interrupt channel 7

RTE_TRAP_FIRQ_8 fast interrupt channel 8

RTE_TRAP_FIRQ_9 fast interrupt channel 9

RTE_TRAP_FIRQ_10 fast interrupt channel 10

RTE_TRAP_FIRQ_11 fast interrupt channel 11

RTE_TRAP_FIRQ_12 fast interrupt channel 12

RTE_TRAP_FIRQ_13 fast interrupt channel 13

RTE_TRAP_FIRQ_14 fast interrupt channel 14

RTE_TRAP_FIRQ_15 fast interrupt channel 15

The following example shows how to install a custom handler (custom_mtime_irq_handler) for
handling the RISC-V machine timer (MTIME) interrupt:

The NEORV32 Processor Visit on GitHub

204 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Listing 14. Example: Installing the MTIME IRQ Handler

neorv32_rte_exception_install(RTE_TRAP_MTI, custom_mtime_irq_handler);

User-defined trap handlers can also be un-installed. This will remove the users trap handler from
the RTE core and will re-install the Default RTE Trap Handlers for the specific trap.

Listing 15. Function Prototype: Installing an Application-Specific Trap Handler

int neorv32_rte_exception_uninstall(uint8_t id);

The argument id defines the identifier of the according trap that shall be un-installed. The function
return zero on success and a non-zero value if an error occurred (invalid id). In this case no
modifications to the RTE’s trap look-up-table will be made.

The following example shows how to un-install the custom handler custom_mtime_irq_handler from
the RISC-V machine timer (MTIME) interrupt:

Listing 16. Example: Removing the Custom MTIME IRQ Handler

neorv32_rte_exception_uninstall(RTE_TRAP_MTI);

4.6.3. Default RTE Trap Handlers

The default RTE trap handlers are executed when a certain trap is triggered that is not handled by a
user-defined application-specific trap handler. These default handler will just output a message
giving additional debug information via UART0 to inform the user and will try to resume normal
execution of the application.

Continuing Execution

In most cases the RTE can successfully continue operation when it catches an interrupt request,
which is not handled by the actual application program. However, if the RTE catches an un_handled
exception like a bus access fault continuing execution will most likely fail and the CPU will crash.

Listing 17. RTE Default Trap Handler Output Example (Illegal Instruction)

<RTE> Illegal instruction @ PC=0x000002d6, MTVAL=0x00001537 </RTE>

In this example the "Illegal instruction" message describes the cause of the trap, which is an illegal
instruction exception here. PC shows the current program counter value when the trap occurred
and MTVAL shows additional debug information from the mtval CSR. In this case it shows the
encoding of the illegal instruction.

The specific message corresponds to the trap code from the mcause CSR (see NEORV32 Trap Listing).
A full list of all messages and the according mcause trap codes are shown below.

The NEORV32 RISC-V Processor Visit on GitHub

205 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Table 60. RTE Default Trap Handler Messages and According mcause Values

Trap identifier According mcause CSR value

"Instruction address misaligned" 0x00000000

"Instruction access fault" 0x00000001

"Illegal instruction" 0x00000002

"Breakpoint" 0x00000003

"Load address misaligned" 0x00000004

"Load access fault" 0x00000005

"Store address misaligned" 0x00000006

"Store access fault" 0x00000007

"Environment call from U-mode" 0x00000008

"Environment call from M-mode" 0x0000000b

"Machine software interrupt" 0x80000003

"Machine timer interrupt" 0x80000007

"Machine external interrupt" 0x8000000b

"Fast interrupt 0" 0x80000010

"Fast interrupt 1" 0x80000011

"Fast interrupt 2" 0x80000012

"Fast interrupt 3" 0x80000013

"Fast interrupt 4" 0x80000014

"Fast interrupt 5" 0x80000015

"Fast interrupt 6" 0x80000016

"Fast interrupt 7" 0x80000017

"Fast interrupt 8" 0x80000018

"Fast interrupt 9" 0x80000019

"Fast interrupt a" 0x8000001a

"Fast interrupt b" 0x8000001b

"Fast interrupt c" 0x8000001c

"Fast interrupt d" 0x8000001d

"Fast interrupt e" 0x8000001e

"Fast interrupt f" 0x8000001f

"Unknown trap cause" not defined

The NEORV32 Processor Visit on GitHub

206 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Bus Access Faults

For bus access faults the RTE default trap handlers also output the error code from the Internal Bus
Monitor (BUSKEEPER) to show the cause of the bus fault. One example is shown below.

Listing 18. RTE Default Trap Handler Output Example (Load Access Bus Fault)

<RTE> Load access fault [TIMEOUT_ERR] @ PC=0x00000150, MTVAL=0xFFFFFF70 </RTE>

The additional message encapsulated in [] shows the actual cause of the bus access fault. Three
different messages are possible here:

• [TIMEOUT_ERR]: The accessed memory-mapped module did not respond within the valid access
time window. In Most cases this is caused by accessing a module that has not been implemented
or when accessing "address space holes" (unused/unmapped addresses).

• [DEVICE_ERR]: The accesses memory-mapped module asserted it’s error signal to indicate an
invalid access. For example this can be caused by trying to write to read-only registers or by
writing data quantities (like a byte) to devices that do not support sub-word write accesses.

• [PMP_ERR]: This indicates an access right violation caused by the PMP Physical Memory Protection.

The NEORV32 RISC-V Processor Visit on GitHub

207 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

[13] This driver file only represents a stub, since the real CFS drivers are defined by the actual CFS implementation.

The NEORV32 Processor Visit on GitHub

208 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 5. On-Chip Debugger (OCD)
The NEORV32 Processor features an on-chip debugger (OCD) implementing execution-based
debugging that is compatible to the Minimal RISC-V Debug Specification Version 0.13.2. Please
refer to this spec for in-deep information. A copy of the specification is available in
docs/references/riscv-debug-release.pdf.

The NEORV32 OCD provides the following key features:

• JTAG access port

• run-control of the CPU: halting, single-stepping and resuming

• executing arbitrary programs during debugging

• accessing core registers

• indirect access to the whole processor address space (via program buffer)

• trigger module for hardware breakpoints

• compatible with upstream OpenOCD

OCD Security Note

Access via the OCD is always authenticated (dmstatus.authenticated == 1). Hence,
the whole system can always be accessed via the on-chip debugger. Currently, there
is no option to disable the OCD via software. The OCD can only be disabled by
disabling implementation (setting ON_CHIP_DEBUGGER_EN generic to false).

Hands-On Tutorial

A simple example on how to use NEORV32 on-chip debugger in combination with
OpenOCD and the GNU debugger is shown in section Debugging using the On-Chip
Debugger of the User Guide.

The NEORV32 on-chip debugger complex is based on four hardware modules:

Figure 11. NEORV32 on-chip debugger complex

The NEORV32 RISC-V Processor Visit on GitHub

209 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/ug/#_debugging_using_the_on_chip_debugger
https://stnolting.github.io/neorv32/ug/#_debugging_using_the_on_chip_debugger
https://github.com/stnolting/neorv32

1. Debug Transport Module (DTM) (rtl/core/neorv32_debug_dtm.vhd): External JTAG access tap to
allow an external adapter to interface with the debug module(DM) using the debug module
interface (dmi).

2. Debug Module (DM) (rtl/core/neorv32_debug_tm.vhd): Debugger control unit that is configured
by the DTM via the the dmi. Form the CPU’s "point of view" this module behaves as a memory-
mapped "peripheral" that can be accessed via the processor-internal bus. The memory-mapped
registers provide an internal data buffer for data transfer from/to the DM, a code ROM
containing the "park loop" code, a program buffer to allow the debugger to execute small
programs defined by the DM and a status register that is used to communicate halt, resume and
execute requests/acknowledges from/to the DM.

3. CPU CPU Debug Mode extension (part of`rtl/core/neorv32_cpu_control.vhd`): This extension
provides the "debug execution mode" which executes the "park loop" code from the DM. The
mode also provides additional CSRs.

4. (CPU Trigger Module (also part of`rtl/core/neorv32_cpu_control.vhd`): This module provides a
single hardware breakpoint, which allows to debug code executed from ROM.)

Theory of Operation

When debugging the system using the OCD, the debugger issues a halt request to the CPU (via the
CPU’s db_halt_req_i signal) to make the CPU enter debug mode. In this state, the application-defined
architectural state of the system/CPU is "frozen" so the debugger can monitor and even modify it.
While in debug mode, the CPU executes the "park loop" code from the code ROM of the DM. This
park loop implements an endless loop, in which the CPU polls the memory-mapped status register
that is controlled by the debug module (DM). The flags of these register are used to communicate
requests from the DM and to acknowledge them by the CPU: trigger execution of the program buffer
or resume the halted application.

The NEORV32 Processor Visit on GitHub

210 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

5.1. Debug Transport Module (DTM)
The debug transport module (VHDL module: rtl/core/neorv32_debug_dtm.vhd) provides a JTAG test
access port (TAP). The DTM is the first entity in the debug system, which connects and external
debugger via JTAG to the next debugging entity: the debug module (DM). External JTAG access is
provided by the following top-level ports.

Table 61. JTAG top level signals

Name Width Direction Description

jtag_trst_i 1 in TAP reset (low-active); this signal is optional, make sure
to pull it high if it is not used

jtag_tck_i 1 in serial clock

jtag_tdi_i 1 in serial data input

jtag_tdo_o 1 out serial data output

jtag_tms_i 1 in mode select

Maximum JTAG Clock

All JTAG signals are synchronized to the processor clock domain by oversampling
them in DTM. Hence, no additional clock domain is required for the DTM.
However, this constraints the maximal JTAG clock frequency (jtag_tck_i) to be less
than or equal to 1/5 of the processor clock frequency (clk_i).

If the on-chip debugger is disabled (ON_CHIP_DEBUGGER_EN = false) the JTAG
serial input jtag_tdi_i is directly connected to the JTAG serial output jtag_tdo_o to
maintain the JTAG chain.

The NEORV32 JTAG TAP does not provide a boundary check function (yet?). Hence,
physical device pins cannot be accessed.

The DTM uses the "debug module interface (dmi)" to access the actual debug module (DM). These
accesses are controlled by TAP-internal registers. Each registers is selected by the JTAG instruction
register (IR) and accessed through the JTAG data register (DR).

The DTM’s instruction and data registers can be accessed using OpenOCDs irscan
and drscan commands. The RISC-V port of OpenOCD also provides low-level
command (riscv dmi_read & riscv dmi_write) to access the dmi debug module
interface.

JTAG access is conducted via the instruction register IR, which is 5 bit wide, and several data
registers DR with different sizes. The data registers are accessed by writing the according address to
the instruction register. The following table shows the available data registers:

Table 62. JTAG TAP registers

The NEORV32 RISC-V Processor Visit on GitHub

211 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address (via
IR)

Name Size [bits] Description

00001 IDCODE 32 identifier, default: 0x0CAFE001 (configurable via
package’s jtag_tap_idcode_* constants)

10000 DTMCS 32 debug transport module control and status register

10001 DMI 41 debug module interface (dmi); 7-bit address, 32-bit
read/write data, 2-bit operation (00 = NOP; 10 = write; 01
= read)

others BYPASS 1 default JTAG bypass register

Table 63. DTMCS - DTM Control and Status Register

Bit(s) Name r/w Description

31:18 - r/- reserved, hardwired to zero

17 dmihardreset r/w setting this bit will reset the DM interface; this bit auto-
clears

16 dmireset r/w setting this bit will clear ste sticky error state; this bit
auto-clears

15 - r/- reserved, hardwired to zero

14:12 idle r/- recommended idle states (= 0, no idle states required)

11:10 dmistat r/- DMI statu: 00 = no error, 01 = reserved, 10 = operation
failed, 11 = failed operation during pending DMI
operation

9:4 abits r/- number of DMI address bits (= 7)

3:0 version r/- 0001 = spec version 0.13

See the RISC-V debug specification for more information regarding the data registers and
operations. A local copy can be found in docs/references.

The NEORV32 Processor Visit on GitHub

212 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/riscv/riscv-debug-spec
https://github.com/stnolting/neorv32

5.2. Debug Module (DM)
According to the RISC-V debug specification, the DM (VHDL module: rtl/core/neorv32_debug_dm.vhd)
acts as a translation interface between abstract operations issued by the debugger and the
platform-specific debugger implementation. It supports the following features (excerpt from the
debug spec):

• Gives the debugger necessary information about the implementation.

• Allows the hart to be halted and resumed and provides status of the current state.

• Provides abstract read and write access to the halted hart’s GPRs.

• Provides access to a reset signal that allows debugging from the very first instruction after reset.

• Provides a mechanism to allow debugging the hart immediately out of reset. (still experimental)

• Provides a Program Buffer to force the hart to execute arbitrary instructions.

• Allows memory access from a hart’s point of view.

The NEORV32 DM follows the "Minimal RISC-V External Debug Specification" to provide full
debugging capabilities while keeping resource (area) requirements at a minimum level. It
implements the execution based debugging scheme for a single hart and provides the following
hardware features:

• program buffer with 2 entries and implicit ebreak instruction afterwards

• no direct bus access (indirect bus access via the CPU)

• abstract commands: "access register" plus auto-execution

• no dedicated halt-on-reset capabilities yet (but can be emulated)

The DM provides two "sides of access": access from the DTM via the debug module interface (dmi)
and access from the CPU via the processor-internal bus. From the DTM’s point of view, the DM
implements a set of DM Registers that are used to control and monitor the actual debugging. From
the CPU’s point of view, the DM implements several memory-mapped registers (within the normal
address space) that are used for communicating debugging control and status (DM CPU Access).

5.2.1. DM Registers

The DM is controlled via a set of registers that are accessed via the DTM’s dmi. The "Minimal RISC-V
Debug Specification" requires only a subset of the registers specified in the spec. The following
registers are implemented. Write accesses to any other registers are ignored and read accesses will
always return zero. Register names that are encapsulated in "()" are not actually implemented;
however, they are listed to explicitly show their functionality.

Table 64. Available DM registers

The NEORV32 RISC-V Processor Visit on GitHub

213 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Address Name Description

0x04 data0 Abstract data 0, used for data transfer between debugger
and processor

0x10 dmcontrol Debug module control

0x11 dmstatus Debug module status

0x12 hartinfo Hart information

0x16 abstracts Abstract control and status

0x17 command Abstract command

0x18 abstractauto Abstract command auto-execution

0x1d (nextdm) Base address of next DM; read as zero to indicate there is
only one DM

0x20 progbuf0 Program buffer 0

0x21 progbuf1 Program buffer 1

0x38 (sbcs) System bus access control and status; read as zero to
indicate there is no direct system bus access

0x40 haltsum0 Halt summary 0

data

0x04 Abstract data 0 data0

Reset value: UNDEFINED

Basic read/write registers to be used with abstract command (for example to read/write data
from/to CPU GPRs).

dmcontrol

0x10 Debug module control register dmcontrol

Reset value: 0x00000000

Control of the overall debug module and the hart. The following table shows all implemented bits.
All remaining bits/bit-fields are configures as "zero" and are read-only. Writing '1' to these
bits/fields will be ignored.

Table 65. dmcontrol - debug module control register bits

Bit Name [RISC-V] R/W Description

31 haltreq -/w set/clear hart halt request

30 resumereq -/w request hart to resume

28 ackhavereset -/w write 1 to clear *havereset flags

1 ndmreset r/w put whole processor into reset when 1

The NEORV32 Processor Visit on GitHub

214 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [RISC-V] R/W Description

0 dmactive r/w DM enable; writing 0-1 will reset the DM

dmstatus

0x11 Debug module status register dmstatus

Reset value: 0x00000000

Current status of the overall debug module and the hart. The entire register is read-only.

Table 66. dmstatus - debug module status register bits

Bit Name [RISC-
V]

Description

31:23 reserved reserved; always zero

22 impebreak always 1; indicates an implicit ebreak instruction after the last program
buffer entry

21:20 reserved reserved; always zero

19 allhavereset 1 when the hart is in reset

18 anyhavereset

17 allresumeack 1 when the hart has acknowledged a resume request

16 anyresumeack

15 allnonexisten
t

always zero to indicate the hart is always existent

14 anynonexisten
t

13 allunavail 1 when the DM is disabled to indicate the hart is unavailable

12 anyunavail

11 allrunning 1 when the hart is running

10 anyrunning

9 allhalted 1 when the hart is halted

8 anyhalted

7 authenticated always 1; there is no authentication

6 authbusy always 0; there is no authentication

5 hasresethaltr
eq

always 0; halt-on-reset is not supported (directly)

4 confstrptrval
id

always 0; no configuration string available

3:0 version 0010 - DM is compatible to version 0.13

The NEORV32 RISC-V Processor Visit on GitHub

215 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

hartinfo

0x12 Hart information hartinfo

Reset value: see below

This register gives information about the hart. The entire register is read-only.

Table 67. hartinfo - hart information register bits

Bit Name [RISC-V] Description

31:24 reserved reserved; always zero

23:20 nscratch 0001, number of dscratch* CPU registers = 1

19:17 reserved reserved; always zero

16 dataccess 0, the data registers are shadowed in the hart’s address space

15:12 datasize 0001, number of 32-bit words in the address space dedicated to
shadowing the data registers (1 register)

11:0 dataaddr = dm_data_base_c(11:0), signed base address of data words (see address
map in DM CPU Access)

abstracts

0x16 Abstract control and status abstracts

Reset value: see below

Command execution info and status.

Table 68. abstracts - abstract control and status register bits

Bit Name [RISC-V] R/W Description

31:29 reserved r/- reserved; always zero

28:24 progbufsize r/- 0010; size of the program buffer (progbuf) = 2 entries

23:11 reserved r/- reserved; always zero

12 busy r/- 1 when a command is being executed

11 reserved r/- reserved; always zero

10:8 cmerr r/w error during command execution (see below); has to be cleared
by writing 111

7:4 reserved r/- reserved; always zero

3:0 datacount r/- 0001; number of implemented data registers for abstract
commands = 1

Error codes in cmderr (highest priority first):

• 000 - no error

The NEORV32 Processor Visit on GitHub

216 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

• 100 - command cannot be executed since hart is not in expected state

• 011 - exception during command execution

• 010 - unsupported command

• 001 - invalid DM register read/write while command is/was executing

command

0x17 Abstract command command

Reset value: 0x00000000

Writing this register will trigger the execution of an abstract command. New command can only
be executed if cmderr is zero. The entire register in write-only (reads will return zero).

The NEORV32 DM only supports Access Register abstract commands. These
commands can only access the hart’s GPRs (abstract command register index
0x1000 - 0x101f).

Table 69. command - abstract command register - "access register" commands only

Bit Name [RISC-V] R/W Description / required value

31:24 cmdtype -/w 00000000 to indicate "access register" command

23 reserved -/w reserved, has to be 0 when writing

22:20 aarsize -/w 010 to indicate 32-bit accesses

21 aarpostincreme
nt

-/w 0, post-increment is not supported

18 postexec -/w if set the program buffer is executed after the command

17 transfer -/w if set the operation in write is conducted

16 write -/w 1: copy data0 to [regno], 0: copy [regno] to data0

15:0 regno -/w GPR-access only; has to be 0x1000 - 0x101f

abstractauto

0x18 Abstract command auto-execution abstractauto

Reset value: 0x00000000s

Register to configure when a read/write access to a DM repeats execution of the last abstract
command.

Table 70. abstractauto - Abstract command auto-execution register bits

Bit Name [RISC-V] R/W Description

17 autoexecprogbu
f[1]

r/w when set reading/writing from/to progbuf1 will execute command
again

The NEORV32 RISC-V Processor Visit on GitHub

217 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [RISC-V] R/W Description

16 autoexecprogbu
f[0]

r/w when set reading/writing from/to progbuf0 will execute command
again

0 autoexecdata[0
]

r/w when set reading/writing from/to data0 will execute command
again

progbuf

0x20 Program buffer 0 progbuf0

0x21 Program buffer 1 progbuf1

Reset value: NOP-instruction

General purpose program buffer (two entries) for the DM.

haltsum0

0x40 Halt summary 0 haltsum0

Reset value: UNDEFINED

Bit 0 of this register is set if the hart is halted (all remaining bits are always zero). The entire
register is read-only.

5.2.2. DM CPU Access

From the CPU’s point of view, the DM behaves as a memory-mapped peripheral that includes

• a small ROM that contains the code for the "park loop", which is executed when the CPU is in
debug mode.

• a program buffer populated by the debugger host to execute small programs

• a data buffer to transfer data between the processor and the debugger host

• a status register to communicate debugging requests

DM Register Access

All memory-mapped registers of the DM can only be accessed by the CPU if it is
actually in debug mode. Hence, the DM registers are not "visible" for normal CPU
operations. Any access outside of debug mode will raise a bus error exception.

Park Loop Code Sources

The assembly sources of the park loop code are available in sw/ocd-
firmware/park_loop.S. Please note, that these sources are not intended to be
changed by the used. Hence, the makefile does not provide an automatic option to
compile and "install" the debugger ROM code into the HDL sources and require a
manual copy (see sw/ocd-firmware/README.md).

The NEORV32 Processor Visit on GitHub

218 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The DM uses a total address space of 128 words of the CPU’s address space (= 512 bytes) divided into
four sections of 32 words (= 128 bytes) each. Please note, that the program buffer, the data buffer
and the status register only uses a few effective words in this address space. However, these
effective addresses are mirrored to fill up the whole 128 bytes of the section. Hence, any CPU access
within this address space will succeed.

Table 71. DM CPU access - address map (divided into four sections)

Base
address

Name [VHDL package] Actual size Description

0xfffff800 dm_code_base_c (=
dm_base_c)

128 bytes Code ROM for the "park loop" code

0xfffff880 dm_pbuf_base_c 16 bytes Program buffer, provided by DM

0xfffff900 dm_data_base_c 4 bytes Data buffer (dm.data0)

0xfffff980 dm_sreg_base_c 4 bytes Control and status register

From the CPU’s point of view, the DM is mapped to an "unused" address range
within the processor’s Address Space right between the bootloader ROM
(BOOTROM) and the actual processor-internal IO space at addresses 0xfffff800 -
0xfffff9ff

When the CPU enters or re-enters (for example via ebreak in the DM’s program buffer) debug mode,
it jumps to the beginning of the DM’s "park loop" code ROM at dm_code_base_c. This is the normal
entry point for the park loop code. If an exception is encountered during debug mode, the CPU
jumps to dm_code_base_c + 4, which is the exception entry point.

Status Register

The status register provides a direct communication channel between the CPU executing the park
loop and the host-controlled controller of the DM. Note that all bits that can be written by the CPU
(acknowledge flags) cause a single-shot (1-cycle) signal to the DM controller and auto-clear (always
read as zero). The bits that are driven by the DM controller and are read-only to the CPU and keep
their state until the CPU acknowledges the according request.

Table 72. DM CPU access - status register

Bit Name CPU access Description

0 halt_ack -/w Set by the CPU to indicate that the CPU is halted and
keeps iterating in the park loop

1 resume_req r/- Set by the DM to tell the CPU to resume normal
operation (leave parking loop and leave debug mode
via dret instruction)

2 resume_ack -/w Set by the CPU to acknowledge that the CPU is now
going to leave parking loop & debug mode

The NEORV32 RISC-V Processor Visit on GitHub

219 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Bit Name CPU access Description

3 execute_req r/- Set by the DM to tell the CPU to leave debug mode and
execute the instructions from the program buffer; CPU
will re-enter parking loop afterwards

4 execute_ack -/w Set by the CPU to acknowledge that the CPU is now
going to execute the program buffer

5 exception_ac
k

-/w Set by the CPU to inform the DM that an exception
occurred during execution of the park loop or during
execution of the program buffer

The NEORV32 Processor Visit on GitHub

220 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

5.3. CPU Debug Mode
The NEORV32 CPU Debug Mode DB or DEBUG (part of rtl/core/neorv32_cpu_control.vhd) is compatible
to the "Minimal RISC-V Debug Specification 0.13.2". It is enabled/implemented by setting the CPU
generic CPU_EXTENSION_RISCV_DEBUG to "true" (done by setting processor generic
ON_CHIP_DEBUGGER_EN). It provides a new operation mode called "debug mode". When enabled,
three additional CSRs are available (section CPU Debug Mode CSRs) and the "return from debug
mode" instruction dret are available.

The CPU debug mode requires the Zicsr and Zifencei CPU extension to be
implemented (top generics CPU_EXTENSION_RISCV_Zicsr and
CPU_EXTENSION_RISCV_Zifencei = true).

The CPU debug-mode is entered when one of the following events appear:

1. executing the ebreak instruction (when in machine-mode and dcsr.ebreakm is set OR when in
user-mode and dcsr.ebreaku is set)

2. debug halt request from external DM (via CPU signal db_halt_req_i, high-active, triggering on
rising-edge)

3. finished executing of a single instruction while in single-step debugging mode (enabled via
dcsr.step)

4. hardware trigger by the Trigger Module

From a hardware point of view, these "entry conditions" are special synchronous (e.g. ebreak
instruction) and asynchronous (e.g. halt request "interrupt") traps, that are handled invisibly by the
control logic.

Whenever the CPU enters debug-mode it performs the following operations:

• wake-up CPU if it was send to sleep mode by the wfi instruction

• move pc to dpc

• copy the hart’s current privilege level to dcsr.prv

• set dcrs.cause according to the cause why debug mode is entered

• no update of mtval, mcause, mtval and mstatus CSRs

• load the address configured via the CPU’s CPU_DEBUG_ADDR generic to the pc to jump to the
"debugger park loop" code stored in the debug module (DM)

When the CPU is in debug-mode the following things are important:

• while in debug mode, the CPU executes the parking loop and the program buffer provided by
the DM if requested

• effective CPU privilege level is machine mode, any active physical memory protection (PMP)
configuration is bypassed

The NEORV32 RISC-V Processor Visit on GitHub

221 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

• the wfi instruction acts as a nop (also during single-stepping)

• if an exception occurs:

◦ if the exception was caused by any debug-mode entry action the CPU jumps to the normal
entry point (= CPU_DEBUG_ADDR) of the park loop again (for example when executing
ebreak in debug-mode)

◦ for all other exception sources the CPU jumps to the exception entry point (=
CPU_DEBUG_ADDR + 4) to signal an exception to the DM; the CPU restarts the park loop
again afterwards

• interrupts are disabled; however, they will remain pending and will get executed after the CPU
has left debug mode

• if the DM makes a resume request, the park loop exits and the CPU leaves debug mode
(executing dret)

• the standard counters (Machine) Counter and Timer CSRs [m]cycle[h] and [m]instret[h] are
stopped; note that the Machine System Timer (MTIME) keep running as well as it’s shadowed
copies in the [m]time[h] CSRs

• all Hardware Performance Monitors (HPM) CSRs are stopped

Debug mode is left either by executing the dret instruction [14] (in debug mode) or by performing a
hardware reset of the CPU. Executing dret outside of debug mode will raise an illegal instruction
exception.

Whenever the CPU leaves debug mode it performs the following operations:

• set the hart’s current privilege level according to dcsr.prv

• restore pc from dpcs

• resume normal operation at pc

5.3.1. CPU Debug Mode CSRs

Two additional CSRs are required by the Minimal RISC-V Debug Specification: The debug mode
control and status register dcsr and the program counter dpc. Providing a general purpose scratch
register for debug mode (dscratch0) allows faster execution of program provided by the debugger,
since one general purpose register can be backup-ed and directly used.

The debug-mode control and status registers (CSRs) are only accessible when the
CPU is in debug mode. If these CSRs are accessed outside of debug mode (for
example when in machine mode) an illegal instruction exception is raised.

dcsr

0x7b0 Debug control and status register dcsr

Reset value: 0x40000000

The NEORV32 Processor Visit on GitHub

222 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The dcsr CSR is compatible to the RISC-V debug spec. It is used to configure debug mode and
provides additional status information. The following bits are implemented. The reaming bits are
read-only and always read as zero.

Table 73. Debug control and status register dcsr bits

Bit Name [RISC-V] R/W Description

31:28 xdebugver r/- 0100 - indicates external debug support exists

27:16 - r/- 000000000000 - reserved

15 ebereakm r/w ebreak instructions in machine mode will enter debug mode when
set

14 ebereakh r/- 0 - hypervisor mode not supported

13 ebereaks r/- 0 - supervisor mode not supported

12 ebereaku r/w ebreak instructions in user mode will enter debug mode when set

11 stepie r/- 0 - IRQs are disabled during single-stepping

10 stopcount r/- 1 - standard counters and HPMs are stopped when in debug
mode

9 stoptime r/- 0 - timers increment as usual

8:6 cause r/- cause identifier - why debug mode was entered (see below)

5 - r/- 0 - reserved

4 mprven r/- 0 - mstatus.mprv is ignored when in debug mode

3 nmip r/- 0 - non-maskable interrupt is pending

2 step r/w enable single-stepping when set

1:0 prv r/w CPU privilege level before/after debug mode

Cause codes in dcsr.cause (highest priority first):

• 010 - trigger by hardware Trigger Module

• 001 - executed EBREAK instruction

• 011 - external halt request (from DM)

• 100 - return from single-stepping

dpc

0x7b1 Debug program counter dpc

Reset value: UNDEFINED

The dcsr CSR is compatible to the RISC-V debug spec. It is used to store the current program
counter when debug mode is entered. The dret instruction will return to dpc by moving dpc to pc.

The NEORV32 RISC-V Processor Visit on GitHub

223 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

dscratch0

0x7b2 Debug scratch register 0 dscratch0

Reset value: UNDEFINED

The dscratch0 CSR is compatible to the RISC-V debug spec. It provides a general purpose debug
mode-only scratch register.

The NEORV32 Processor Visit on GitHub

224 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

5.4. Trigger Module
The NEORV32 trigger module implements a subset of the features described in the "RISC-V Debug
Specification / Trigger Module". It is always implemented when the CPU debug mode / the on-chip
debugger is implemented.

The trigger module only provides a single trigger of instruction address match
type. This trigger will fire after the instruction at the specific address has been
executed.

The trigger module only provides a single trigger supporting only the "instruction address match"
type. This limitation is granted by the RISC-V specs. and is sufficient to debug code executed from
read-only memory (ROM). "Normal" software breakpoints (using gdb’s b/break command) are
implemented by temporarily replacing the according instruction word by a BREAK instruction. This
is not possible when debugging code that is executed from read-only memory (for example when
debugging programs that are executed via the Execute In Place Module (XIP)). Therefore, the
NEORV32 trigger module provides a single "instruction address match" trigger to enter debug mode
when executing the instruction at a specific address. These "hardware-assisted breakpoints" are
used by gdb’s hb/hbreak command.

5.4.1. Trigger Module CSRs

The trigger module provides 8 additional CSRs, which accessible in debug mode and also in
machine-mode. Since the trigger module does not support native mode writes from machine-mode
software to those CSRs are ignored. Hence, the CSRs of this module are only relevant for the
debugger.

tselect

0x7a0 Trigger select register tselect

Reset value: 0x00000000

This CSR is hardwired to zero indicating there is only one trigger available. Any write access is
ignored.

tdata1

0x7a1 Trigger data register 1 / match control register tdata1 / mcontrol

Reset value: 0x28041048

This CSR is used to configure the address match trigger. Only one bit is writable, the remaining bits
are hardwired (see table below). Write attempts to the hardwired bits are ignored.

Table 74. Match control CSR (tdata1) bits

Bit Name [RISC-V] R/W Description

31:28 type r/- 0010 - address match trigger

The NEORV32 RISC-V Processor Visit on GitHub

225 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Bit Name [RISC-V] R/W Description

27 dmode r/- 1 - only debug-mode can write to the tdata* CSRs

26:21 maskmax r/- 000000 - only exact values

20 hit r/- 0 - feature not supported

19 select r/- 0 - fire trigger on address match

18 timing r/- 1 - trigger after executing the triggering instruction

17:16 sizelo r/- 00 - match against an access of any size

15:12 action r/- 0001 - enter debug mode on trigger fire

11 chain r/- 0 - chaining is not supported - there is only one trigger

10:6 match r/- 0000 - only full-address match

6 m r/- 1 - trigger enabled when in machine-mode

5 h r/- 0 - hypervisor-mode not supported

4 s r/- 0 - supervisor-mode not supported

3 u r/- trigger enabled when in user-mode, set when U ISA extension is
enabled

2 exe r/w set to enable trigger

1 store r/- 0 - store address/data matching not supported

0 load r/- 0 - load address/data matching not supported

tdata2

0x7a2 Trigger data register 2 tdata2

Reset value: UNDEFINED

Since only the "address match trigger" type is supported, this r/w CSR is used to store the address
of the triggering instruction.

tdata3

0x7a3 Trigger data register 3 tdata3

Reset value: 0x00000000

This CSR is not required for the NEORV32 trigger module. Hence, it is hardwired to zero and any
write access is ignored.

tinfo

0x7a4 Trigger information register tinfo

Reset value: 0x00000004

The NEORV32 Processor Visit on GitHub

226 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

This CSR is hardwired to "4" indicating there is only an "address match trigger" available. Any
write access is ignored.

tcontrol

0x7a5 Trigger control register tcontrol

Reset value: 0x00000000

This CSR is not required for the NEORV32 trigger module. Hence, it is hardwired to zero and any
write access is ignored.

mcontext

0x7a8 Machine context register mcontext

Reset value: 0x00000000

This CSR is not required for the NEORV32 trigger module. Hence, it is hardwired to zero and any
write access is ignored.

scontext

0x7aa Supervisor context register scontext

Reset value: 0x00000000

This CSR is not required for the NEORV32 trigger module. Hence, it is hardwired to zero and any
write access is ignored.

The NEORV32 RISC-V Processor Visit on GitHub

227 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

[14] dret should only be executed inside the debugger "park loop" code (→ code ROM in the debug module (DM).)

The NEORV32 Processor Visit on GitHub

228 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 6. Legal

License
BSD 3-Clause License

Copyright (c) 2022, Stephan Nolting. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

The NEORV32 RISC-V Processor
HQ: https://github.com/stnolting/neorv32
By Dipl.-Ing. Stephan Nolting
European Union, Germany
Contact: stnolting@gmail.com

The NEORV32 RISC-V Processor Visit on GitHub

229 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32
mailto:stnolting@gmail.com
https://github.com/stnolting/neorv32

Proprietary Notice
• "GitHub" is a Subsidiary of Microsoft Corporation.

• "Vivado" and "Artix" are trademarks of Xilinx Inc.

• "AXI", "AXI4-Lite" and "AXI4-Stream" are trademarks of Arm Holdings plc.

• "ModelSim" is a trademark of Mentor Graphics – A Siemens Business.

• "Quartus Prime" and "Cyclone" are trademarks of Intel Corporation.

• "iCE40", "UltraPlus" and "Radiant" are trademarks of Lattice Semiconductor Corporation.

• "Windows" is a trademark of Microsoft Corporation.

• "Tera Term" copyright by T. Teranishi.

• "NeoPixel" is a trademark of Adafruit Industries.

• Images/figures made with Microsoft Power Point.

• Timing diagrams made with WaveDrom Editor.

• Documentation proudly made with asciidoctor.

• All further/unreferenced products belong to their according copyright holders.

PDF icons from https://www.flaticon.com and made by Freepik, Good Ware, Pixel perfect, Vectors
Market

Disclaimer
This project is released under the BSD 3-Clause license. No copyright infringement intended. Other
implied or used projects might have different licensing – see their documentation to get more
information.

Limitation of Liability for External Links
This document contains links to the websites of third parties ("external links"). As the content of
these websites is not under our control, we cannot assume any liability for such external content.
In all cases, the provider of information of the linked websites is liable for the content and accuracy
of the information provided. At the point in time when the links were placed, no infringements of
the law were recognizable to us. As soon as an infringement of the law becomes known to us, we
will immediately remove the link in question.

Citing

This is an open-source project that is free of charge. Use this project in any way
you like (as long as it complies to the permissive license). Please cite it
appropriately. ὄ�

The NEORV32 Processor Visit on GitHub

230 / 231 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://www.flaticon.com
https://www.freepik.com
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/authors/pixel-perfect
https://www.flaticon.com/authors/vectors-market
https://www.flaticon.com/authors/vectors-market
https://github.com/stnolting/neorv32

Contributors ❤️

Please add as many contributors as possible to the author field.
This project would not be where it is without them.

If you are using the NEORV32 or parts of the project in some kind of publication, please cite it as
follows:

Listing 19. BibTeX

@misc{nolting22,
 author = {Nolting, S. and ...},
 title = {The NEORV32 RISC-V Processor},
 year = {2022},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/stnolting/neorv32}}
}

DOI

This project also provides a digital object identifier provided by zenodo:
[zenodo.5018888]

Acknowledgments
A big shout-out to the community and all contributors, who helped improving this project! ❤️

RISC-V - instruction sets want to be free!

Continuous integration provided by GitHub Actions and powered by GHDL.

The NEORV32 RISC-V Processor Visit on GitHub

231 / 231 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32/graphs/contributors
https://zenodo.org
https://doi.org/10.5281/zenodo.5018888
https://github.com/stnolting/neorv32/graphs/contributors
https://riscv.org
https://github.com/features/actions
https://github.com/ghdl/ghdl
https://github.com/stnolting/neorv32

	The NEORV32 RISC-V Processor: Datasheet
	Table of Contents
	Chapter 1. Overview
	1.1. Rationale
	1.2. Project Key Features
	1.3. Project Folder Structure
	1.4. VHDL File Hierarchy
	1.5. FPGA Implementation Results
	1.5.1. CPU
	1.5.2. Processor - Modules
	1.5.3. Exemplary Setups

	1.6. CPU Performance

	Chapter 2. NEORV32 Processor (SoC)
	2.1. Processor Top Entity - Signals
	2.2. Processor Top Entity - Generics
	2.2.1. General
	CLOCK_FREQUENCY
	INT_BOOTLOADER_EN
	HW_THREAD_ID
	ON_CHIP_DEBUGGER_EN

	2.2.2. RISC-V CPU Extensions
	CPU_EXTENSION_RISCV_B
	CPU_EXTENSION_RISCV_C
	CPU_EXTENSION_RISCV_E
	CPU_EXTENSION_RISCV_M
	CPU_EXTENSION_RISCV_U
	CPU_EXTENSION_RISCV_Zfinx
	CPU_EXTENSION_RISCV_Zicsr
	CPU_EXTENSION_RISCV_Zicntr
	CPU_EXTENSION_RISCV_Zihpm
	CPU_EXTENSION_RISCV_Zifencei
	CPU_EXTENSION_RISCV_Zmmul
	CPU_EXTENSION_RISCV_Zxcfu

	2.2.3. Tuning Options
	FAST_MUL_EN
	FAST_SHIFT_EN
	CPU_CNT_WIDTH
	CPU_IPB_ENTRIES

	2.2.4. Physical Memory Protection (PMP)
	PMP_NUM_REGIONS
	PMP_MIN_GRANULARITY

	2.2.5. Hardware Performance Monitors (HPM)
	HPM_NUM_CNTS
	HPM_CNT_WIDTH

	2.2.6. Internal Instruction Memory
	MEM_INT_IMEM_EN
	MEM_INT_IMEM_SIZE

	2.2.7. Internal Data Memory
	MEM_INT_DMEM_EN
	MEM_INT_DMEM_SIZE

	2.2.8. Internal Cache Memory
	ICACHE_EN
	ICACHE_NUM_BLOCKS
	ICACHE_BLOCK_SIZE
	ICACHE_ASSOCIATIVITY

	2.2.9. External Memory Interface
	MEM_EXT_EN
	MEM_EXT_TIMEOUT
	MEM_EXT_PIPE_MODE
	MEM_EXT_BIG_ENDIAN
	MEM_EXT_ASYNC_RX

	2.2.10. Stream Link Interface
	SLINK_NUM_TX
	SLINK_NUM_RX
	SLINK_TX_FIFO
	SLINK_RX_FIFO

	2.2.11. External Interrupt Controller
	XIRQ_NUM_CH
	XIRQ_TRIGGER_TYPE
	XIRQ_TRIGGER_POLARITY

	2.2.12. Processor Peripheral/IO Modules
	IO_GPIO_EN
	IO_MTIME_EN
	IO_UART0_EN
	IO_UART0_RX_FIFO
	IO_UART0_TX_FIFO
	IO_UART1_EN
	IO_UART1_RX_FIFO
	IO_UART1_TX_FIFO
	IO_SPI_EN
	IO_TWI_EN
	IO_PWM_NUM_CH
	IO_WDT_EN
	IO_TRNG_EN
	IO_TRNG_FIFO
	IO_CFS_EN
	IO_CFS_CONFIG
	IO_CFS_IN_SIZE
	IO_CFS_OUT_SIZE
	IO_NEOLED_EN
	IO_NEOLED_TX_FIFO
	IO_GPTMR_EN
	IO_XIP_EN

	2.3. Processor Interrupts
	2.3.1. RISC-V Standard Interrupts
	2.3.2. Platform External Interrupts
	2.3.3. NEORV32-Specific Fast Interrupt Requests

	2.4. Address Space
	2.4.1. CPU Data and Instruction Access
	2.4.2. Address Space Layout
	2.4.3. Memory Configuration
	Internal Memories
	External Memories

	2.4.4. Boot Configuration
	Indirect Boot
	Direct Boot

	2.5. Processor-Internal Modules
	2.5.1. Instruction Memory (IMEM)
	2.5.2. Data Memory (DMEM)
	2.5.3. Bootloader ROM (BOOTROM)
	2.5.4. Processor-Internal Instruction Cache (iCACHE)
	2.5.5. Processor-External Memory Interface (WISHBONE) (AXI4-Lite)
	2.5.6. Internal Bus Monitor (BUSKEEPER)
	2.5.7. Stream Link Interface (SLINK)
	2.5.8. General Purpose Input and Output Port (GPIO)
	2.5.9. Watchdog Timer (WDT)
	2.5.10. Machine System Timer (MTIME)
	2.5.11. Primary Universal Asynchronous Receiver and Transmitter (UART0)
	2.5.12. Secondary Universal Asynchronous Receiver and Transmitter (UART1)
	2.5.13. Serial Peripheral Interface Controller (SPI)
	2.5.14. Two-Wire Serial Interface Controller (TWI)
	2.5.15. Pulse-Width Modulation Controller (PWM)
	2.5.16. True Random-Number Generator (TRNG)
	2.5.17. Custom Functions Subsystem (CFS)
	2.5.18. Smart LED Interface (NEOLED)
	2.5.19. External Interrupt Controller (XIRQ)
	2.5.20. General Purpose Timer (GPTMR)
	2.5.21. Execute In Place Module (XIP)
	2.5.22. System Configuration Information Memory (SYSINFO)
	SYSINFO - SoC Configuration
	SYSINFO - Cache Configuration

	Chapter 3. NEORV32 Central Processing Unit (CPU)
	3.1. Architecture
	3.2. Full Virtualization
	3.3. RISC-V Compatibility
	3.3.1. RISC-V Incompatibility Issues and Limitations

	3.4. CPU Top Entity - Signals
	3.5. CPU Top Entity - Generics
	3.6. Instruction Sets and Extensions
	3.6.1. B - Bit-Manipulation Operations
	3.6.2. C - Compressed Instructions
	3.6.3. E - Embedded CPU
	3.6.4. I - Base Integer ISA
	3.6.5. M - Integer Multiplication and Division
	3.6.6. Zmmul - Integer Multiplication
	3.6.7. U - Less-Privileged User Mode
	3.6.8. X - NEORV32-Specific (Custom) Extensions
	3.6.9. Zfinx Single-Precision Floating-Point Operations
	3.6.10. Zicsr Control and Status Register Access / Privileged Architecture
	3.6.11. Zicntr CPU Base Counters
	3.6.12. Zihpm Hardware Performance Monitors
	3.6.13. Zifencei Instruction Stream Synchronization
	3.6.14. Zxcfu Custom Instructions Extension (CFU)
	3.6.15. PMP Physical Memory Protection

	3.7. Custom Functions Unit (CFU)
	3.7.1. Custom CFU Instructions - General
	3.7.2. Using Custom Instructions in Software
	3.7.3. Custom Instructions Hardware

	3.8. Instruction Timing
	3.9. Control and Status Registers (CSRs)
	3.9.1. Floating-Point CSRs
	fflags
	frm
	fcsr

	3.9.2. Machine Configuration CSRs
	menvcfg
	menvcfgh

	3.9.3. Machine Trap Setup CSRs
	mstatus
	misa
	mie
	mtvec
	mcounteren
	mstatush

	3.9.4. Machine Trap Handling CSRs
	mscratch
	mepc
	mcause
	mtval
	mip

	3.9.5. Machine Physical Memory Protection CSRs
	pmpcfg
	pmpaddr

	3.9.6. (Machine) Counter and Timer CSRs
	cycle[h]
	time[h]
	instret[h]
	mcycle[h]
	minstret[h]

	3.9.7. Hardware Performance Monitors (HPM) CSRs
	mhpmevent
	mhpmcounter[h]

	3.9.8. Machine Counter Setup CSRs
	mcountinhibit

	3.9.9. Machine Information CSRs
	mvendorid
	marchid
	mimpid
	mhartid
	mconfigptr

	3.9.10. NEORV32-Specific CSRs
	mxisa

	3.9.11. Traps, Exceptions and Interrupts
	Memory Access Exceptions
	Custom Fast Interrupt Request Lines
	NEORV32 Trap Listing

	3.9.12. Bus Interface
	Protocol

	3.9.13. CPU Hardware Reset

	Chapter 4. Software Framework
	4.1. Compiler Toolchain
	4.2. Core Libraries
	4.3. Application Makefile
	4.3.1. Targets
	4.3.2. Configuration
	4.3.3. Default Compiler Flags

	4.4. Executable Image Format
	4.4.1. Linker Script
	4.4.2. RAM Layout
	4.4.3. C Standard Library
	4.4.4. Executable Image Generator
	4.4.5. Start-Up Code (crt0)
	After-Main Handler

	4.5. Bootloader
	4.5.1. Bootloader SoC/CPU Requirements
	4.5.2. Bootloader Flash Requirements
	4.5.3. Bootloader Console
	4.5.4. Auto Boot Sequence
	4.5.5. Bootloader Error Codes

	4.6. NEORV32 Runtime Environment
	4.6.1. RTE Operation
	4.6.2. Using the RTE
	4.6.3. Default RTE Trap Handlers
	Bus Access Faults

	Chapter 5. On-Chip Debugger (OCD)
	5.1. Debug Transport Module (DTM)
	5.2. Debug Module (DM)
	5.2.1. DM Registers
	data
	dmcontrol
	dmstatus
	hartinfo
	abstracts
	command
	abstractauto
	progbuf
	haltsum0

	5.2.2. DM CPU Access

	5.3. CPU Debug Mode
	5.3.1. CPU Debug Mode CSRs
	dcsr
	dpc
	dscratch0

	5.4. Trigger Module
	5.4.1. Trigger Module CSRs
	tselect
	tdata1
	tdata2
	tdata3
	tinfo
	tcontrol
	mcontext
	scontext

	Chapter 6. Legal
	License
	Proprietary Notice
	Disclaimer
	Limitation of Liability for External Links
	Citing
	Acknowledgments

