-- ################################################################################################# -- # << NEORV32 - Default Processor Testbench >> # -- # ********************************************************************************************* # -- # The processor is configured to use a maximum of functional units (for testing purpose). # -- # Use the "User Configuration" section to configure the testbench according to your needs. # -- # See NEORV32 data sheet for more information. # -- # ********************************************************************************************* # -- # BSD 3-Clause License # -- # # -- # Copyright (c) 2021, Stephan Nolting. All rights reserved. # -- # # -- # Redistribution and use in source and binary forms, with or without modification, are # -- # permitted provided that the following conditions are met: # -- # # -- # 1. Redistributions of source code must retain the above copyright notice, this list of # -- # conditions and the following disclaimer. # -- # # -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # -- # conditions and the following disclaimer in the documentation and/or other materials # -- # provided with the distribution. # -- # # -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # -- # endorse or promote products derived from this software without specific prior written # -- # permission. # -- # # -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # -- # OF THE POSSIBILITY OF SUCH DAMAGE. # -- # ********************************************************************************************* # -- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # -- ################################################################################################# library vunit_lib; context vunit_lib.vunit_context; context vunit_lib.com_context; context vunit_lib.vc_context; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.math_real.all; library neorv32; use neorv32.neorv32_package.all; use neorv32.neorv32_application_image.all; -- this file is generated by the image generator use std.textio.all; library osvvm; use osvvm.RandomPkg.all; use work.uart_rx_pkg.all; entity neorv32_tb is generic (runner_cfg : string := runner_cfg_default; ci_mode : boolean := false); end neorv32_tb; architecture neorv32_tb_rtl of neorv32_tb is -- User Configuration --------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- general -- constant ext_imem_c : boolean := false; -- false: use and boot from proc-internal IMEM, true: use and boot from external (initialized) simulated IMEM (ext. mem A) constant ext_dmem_c : boolean := false; -- false: use proc-internal DMEM, true: use external simulated DMEM (ext. mem B) constant imem_size_c : natural := 16*1024; -- size in bytes of processor-internal IMEM / external mem A constant dmem_size_c : natural := 8*1024; -- size in bytes of processor-internal DMEM / external mem B constant f_clock_c : natural := 100000000; -- main clock in Hz constant baud0_rate_c : natural := 19200; -- simulation UART0 (primary UART) baud rate constant baud1_rate_c : natural := 19200; -- simulation UART1 (secondary UART) baud rate -- simulated external Wishbone memory A (can be used as external IMEM) -- constant ext_mem_a_base_addr_c : std_ulogic_vector(31 downto 0) := x"00000000"; -- wishbone memory base address (external IMEM base) constant ext_mem_a_size_c : natural := imem_size_c; -- wishbone memory size in bytes constant ext_mem_a_latency_c : natural := 8; -- latency in clock cycles (min 1, max 255), plus 1 cycle initial delay -- simulated external Wishbone memory B (can be used as external DMEM) -- constant ext_mem_b_base_addr_c : std_ulogic_vector(31 downto 0) := x"80000000"; -- wishbone memory base address (external DMEM base) constant ext_mem_b_size_c : natural := dmem_size_c; -- wishbone memory size in bytes constant ext_mem_b_latency_c : natural := 8; -- latency in clock cycles (min 1, max 255), plus 1 cycle initial delay -- simulated external Wishbone memory C (can be used to simulate external IO access) -- constant ext_mem_c_base_addr_c : std_ulogic_vector(31 downto 0) := x"F0000000"; -- wishbone memory base address (default begin of EXTERNAL IO area) constant ext_mem_c_size_c : natural := 64; -- wishbone memory size in bytes constant ext_mem_c_latency_c : natural := 3; -- latency in clock cycles (min 1, max 255), plus 1 cycle initial delay -- simulation interrupt trigger -- constant irq_trigger_base_addr_c : std_ulogic_vector(31 downto 0) := x"FF000000"; -- ------------------------------------------------------------------------------------------- -- internals - hands off! -- constant int_imem_c : boolean := not ext_imem_c; constant int_dmem_c : boolean := not ext_dmem_c; constant uart0_baud_val_c : real := real(f_clock_c) / real(baud0_rate_c); constant uart1_baud_val_c : real := real(f_clock_c) / real(baud1_rate_c); constant t_clock_c : time := (1 sec) / f_clock_c; -- generators -- signal clk_gen, rst_gen : std_ulogic := '0'; -- uart -- signal uart0_txd : std_ulogic; -- local loop-back signal uart0_cts : std_ulogic; -- local loop-back signal uart1_txd : std_ulogic; -- local loop-back signal uart1_cts : std_ulogic; -- local loop-back -- gpio -- signal gpio : std_ulogic_vector(63 downto 0); -- twi -- signal twi_scl, twi_sda : std_logic; -- spi -- signal spi_data : std_ulogic; -- irq -- signal msi_ring, mei_ring : std_ulogic; -- Wishbone bus -- type wishbone_t is record addr : std_ulogic_vector(31 downto 0); -- address wdata : std_ulogic_vector(31 downto 0); -- master write data rdata : std_ulogic_vector(31 downto 0); -- master read data we : std_ulogic; -- write enable sel : std_ulogic_vector(03 downto 0); -- byte enable stb : std_ulogic; -- strobe cyc : std_ulogic; -- valid cycle ack : std_ulogic; -- transfer acknowledge err : std_ulogic; -- transfer error tag : std_ulogic_vector(02 downto 0); -- request tag lock : std_ulogic; -- exclusive access request end record; signal wb_cpu, wb_mem_a, wb_mem_b, wb_mem_c, wb_irq : wishbone_t; -- Wishbone access latency type -- type ext_mem_read_latency_t is array (0 to 255) of std_ulogic_vector(31 downto 0); -- exclusive access / reservation -- signal ext_mem_c_atomic_reservation : std_ulogic := '0'; -- simulated external memory c (IO) -- signal ext_ram_c : mem32_t(0 to ext_mem_c_size_c/4-1); -- uninitialized, used to simulate external IO -- simulated external memory bus feedback type -- type ext_mem_t is record rdata : ext_mem_read_latency_t; acc_en : std_ulogic; ack : std_ulogic_vector(ext_mem_a_latency_c-1 downto 0); end record; signal ext_mem_a, ext_mem_b, ext_mem_c : ext_mem_t; -- stream link interface - local echo -- signal slink_dat : sdata_8x32_t; signal slink_val : std_ulogic_vector(7 downto 0); signal slink_rdy : std_ulogic_vector(7 downto 0); signal slink_transmitter_dat, slink_receiver_dat : sdata_8x32_t; signal slink_transmitter_val, slink_receiver_val : std_ulogic_vector(7 downto 0); signal slink_transmitter_rdy, slink_receiver_rdy : std_ulogic_vector(7 downto 0); constant uart0_rx_logger : logger_t := get_logger("UART0.RX"); constant uart1_rx_logger : logger_t := get_logger("UART1.RX"); constant uart0_rx_handle : uart_rx_t := new_uart_rx(uart0_baud_val_c, uart0_rx_logger); constant uart1_rx_handle : uart_rx_t := new_uart_rx(uart1_baud_val_c, uart1_rx_logger); type axi_stream_master_vec_t is array(integer range <>) of axi_stream_master_t; type axi_stream_slave_vec_t is array(integer range <>) of axi_stream_slave_t; impure function init_slink_transmitters return axi_stream_master_vec_t is variable result : axi_stream_master_vec_t(slink_transmitter_val'range); begin for idx in result'range loop result(idx) := new_axi_stream_master( data_length => slink_transmitter_dat(idx)'length, stall_config => new_stall_config(0.05, 1, 10) ); end loop; return result; end; impure function init_slink_receivers return axi_stream_slave_vec_t is variable result : axi_stream_slave_vec_t(slink_receiver_val'range); begin for idx in result'range loop result(idx) := new_axi_stream_slave( data_length => slink_receiver_dat(idx)'length, stall_config => new_stall_config(0.05, 1, 10) ); end loop; return result; end; constant slink_transmitters : axi_stream_master_vec_t := init_slink_transmitters; constant slink_receivers : axi_stream_slave_vec_t := init_slink_receivers; begin test_runner : process variable msg : msg_t; variable rnd : RandomPType; variable value : std_logic_vector(slink_transmitter_dat(0)'range); begin test_runner_setup(runner, runner_cfg); rnd.InitSeed(test_runner'path_name); -- Show passing checks for UART0 on the display (stdout) show(uart0_rx_logger, display_handler, pass); show(uart1_rx_logger, display_handler, pass); if ci_mode then check_uart(net, uart0_rx_handle, nul & nul); else check_uart(net, uart0_rx_handle, "Blinking LED demo program" & cr & lf); end if; if ci_mode then -- No need to send the full expectation in one big chunk check_uart(net, uart1_rx_handle, nul & nul); check_uart(net, uart1_rx_handle, "0/46" & cr & lf); end if; -- Apply some random data on each SLINK inputs and expect it to -- be echoed by the CPU. No blocking. Let the SLINK transmitters -- and receivers do this work in parallel. for idx in slink_transmitters'range loop for iter in 1 to 100 loop value := rnd.RandSlv(value'length); -- SLINK is AXI Stream compatible so the SLINK transmitters and -- and receivers are AXI Stream master and slave verification components (VCs). -- The full-featured AXI Stream verification component interface (VCI) is used -- but the AXI stream VCs also implements the basic stream VCI which also works -- for simple transactions like these. To use that interface for pushing data -- the AXI Steam VC must be "cast" to a basic stream VC using "as_stream" -- -- push_stream(net, as_stream(slink_transmitters(idx)), value); push_axi_stream(net, slink_transmitters(idx), value); check_axi_stream(net, slink_receivers(idx), value, blocking => false); end loop; end loop; -- Wait until all expected data has been received -- -- wait_until_idle can take the VC actor as argument but -- the more abstract view is that wait_until_idle is part -- of the sync VCI and to use it a VC must be cast -- to a sync VC wait_until_idle(net, as_sync(uart0_rx_handle)); wait_until_idle(net, as_sync(uart1_rx_handle)); for idx in slink_receivers'range loop wait_until_idle(net, as_sync(slink_receivers(idx))); end loop; -- Wait a bit more if some extra unexpected data is produced. If so, -- uart_rx will fail wait for (20 * (1e9 / baud0_rate_c)) * ns; test_runner_cleanup(runner); end process; -- In case we get stuck waiting there is a watchdog timeout to terminate and fail the -- testbench test_runner_watchdog(runner, 50 ms); -- Clock/Reset Generator ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- clk_gen <= not clk_gen after (t_clock_c/2); rst_gen <= '0', '1' after 60*(t_clock_c/2); -- The Core of the Problem ---------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_top_inst: neorv32_top generic map ( -- General -- CLOCK_FREQUENCY => f_clock_c, -- clock frequency of clk_i in Hz HW_THREAD_ID => 0, -- hardware thread id (hartid) (32-bit) INT_BOOTLOADER_EN => false, -- boot configuration: true = boot explicit bootloader; false = boot from int/ext (I)MEM -- On-Chip Debugger (OCD) -- ON_CHIP_DEBUGGER_EN => true, -- implement on-chip debugger -- RISC-V CPU Extensions -- CPU_EXTENSION_RISCV_A => true, -- implement atomic extension? CPU_EXTENSION_RISCV_B => true, -- implement bit-manipulation extension? CPU_EXTENSION_RISCV_C => true, -- implement compressed extension? CPU_EXTENSION_RISCV_E => false, -- implement embedded RF extension? CPU_EXTENSION_RISCV_M => true, -- implement muld/div extension? CPU_EXTENSION_RISCV_U => true, -- implement user mode extension? CPU_EXTENSION_RISCV_Zfinx => true, -- implement 32-bit floating-point extension (using INT reg!) CPU_EXTENSION_RISCV_Zicsr => true, -- implement CSR system? CPU_EXTENSION_RISCV_Zicntr => true, -- implement base counters? CPU_EXTENSION_RISCV_Zihpm => true, -- implement hardware performance monitors? CPU_EXTENSION_RISCV_Zifencei => true, -- implement instruction stream sync.? -- Extension Options -- FAST_MUL_EN => false, -- use DSPs for M extension's multiplier FAST_SHIFT_EN => false, -- use barrel shifter for shift operations CPU_CNT_WIDTH => 64, -- total width of CPU cycle and instret counters (0..64) -- Physical Memory Protection (PMP) -- PMP_NUM_REGIONS => 8, -- number of regions (0..64) PMP_MIN_GRANULARITY => 64*1024, -- minimal region granularity in bytes, has to be a power of 2, min 8 bytes -- Hardware Performance Monitors (HPM) -- HPM_NUM_CNTS => 12, -- number of implemented HPM counters (0..29) HPM_CNT_WIDTH => 40, -- total size of HPM counters (0..64) -- Internal Instruction memory -- MEM_INT_IMEM_EN => int_imem_c , -- implement processor-internal instruction memory MEM_INT_IMEM_SIZE => imem_size_c, -- size of processor-internal instruction memory in bytes -- Internal Data memory -- MEM_INT_DMEM_EN => int_dmem_c, -- implement processor-internal data memory MEM_INT_DMEM_SIZE => dmem_size_c, -- size of processor-internal data memory in bytes -- Internal Cache memory -- ICACHE_EN => true, -- implement instruction cache ICACHE_NUM_BLOCKS => 8, -- i-cache: number of blocks (min 2), has to be a power of 2 ICACHE_BLOCK_SIZE => 64, -- i-cache: block size in bytes (min 4), has to be a power of 2 ICACHE_ASSOCIATIVITY => 2, -- i-cache: associativity / number of sets (1=direct_mapped), has to be a power of 2 -- External memory interface -- MEM_EXT_EN => true, -- implement external memory bus interface? MEM_EXT_TIMEOUT => 256, -- cycles after a pending bus access auto-terminates (0 = disabled) -- Stream link interface -- SLINK_NUM_TX => 8, -- number of TX links (0..8) SLINK_NUM_RX => 8, -- number of TX links (0..8) SLINK_TX_FIFO => 4, -- TX fifo depth, has to be a power of two SLINK_RX_FIFO => 1, -- RX fifo depth, has to be a power of two -- External Interrupts Controller (XIRQ) -- XIRQ_NUM_CH => 32, -- number of external IRQ channels (0..32) XIRQ_TRIGGER_TYPE => (others => '1'), -- trigger type: 0=level, 1=edge XIRQ_TRIGGER_POLARITY => (others => '1'), -- trigger polarity: 0=low-level/falling-edge, 1=high-level/rising-edge -- Processor peripherals -- IO_GPIO_EN => true, -- implement general purpose input/output port unit (GPIO)? IO_MTIME_EN => true, -- implement machine system timer (MTIME)? IO_UART0_EN => true, -- implement primary universal asynchronous receiver/transmitter (UART0)? IO_UART0_RX_FIFO => 32, -- RX fifo depth, has to be a power of two, min 1 IO_UART0_TX_FIFO => 32, -- TX fifo depth, has to be a power of two, min 1 IO_UART1_EN => true, -- implement secondary universal asynchronous receiver/transmitter (UART1)? IO_UART1_RX_FIFO => 1, -- RX fifo depth, has to be a power of two, min 1 IO_UART1_TX_FIFO => 1, -- TX fifo depth, has to be a power of two, min 1 IO_SPI_EN => true, -- implement serial peripheral interface (SPI)? IO_TWI_EN => true, -- implement two-wire interface (TWI)? IO_PWM_NUM_CH => 30, -- number of PWM channels to implement (0..60); 0 = disabled IO_WDT_EN => true, -- implement watch dog timer (WDT)? IO_TRNG_EN => false, -- trng cannot be simulated IO_CFS_EN => true, -- implement custom functions subsystem (CFS)? IO_CFS_CONFIG => (others => '0'), -- custom CFS configuration generic IO_CFS_IN_SIZE => 32, -- size of CFS input conduit in bits IO_CFS_OUT_SIZE => 32, -- size of CFS output conduit in bits IO_NEOLED_EN => true, -- implement NeoPixel-compatible smart LED interface (NEOLED)? IO_NEOLED_TX_FIFO => 8, -- NEOLED TX FIFO depth, 1..32k, has to be a power of two IO_GPTMR_EN => true -- implement general purpose timer (GPTMR)? ) port map ( -- Global control -- clk_i => clk_gen, -- global clock, rising edge rstn_i => rst_gen, -- global reset, low-active, async -- JTAG on-chip debugger interface (available if ON_CHIP_DEBUGGER_EN = true) -- jtag_trst_i => '1', -- low-active TAP reset (optional) jtag_tck_i => '0', -- serial clock jtag_tdi_i => '0', -- serial data input jtag_tdo_o => open, -- serial data output jtag_tms_i => '0', -- mode select -- Wishbone bus interface (available if MEM_EXT_EN = true) -- wb_tag_o => wb_cpu.tag, -- request tag wb_adr_o => wb_cpu.addr, -- address wb_dat_i => wb_cpu.rdata, -- read data wb_dat_o => wb_cpu.wdata, -- write data wb_we_o => wb_cpu.we, -- read/write wb_sel_o => wb_cpu.sel, -- byte enable wb_stb_o => wb_cpu.stb, -- strobe wb_cyc_o => wb_cpu.cyc, -- valid cycle wb_lock_o => wb_cpu.lock, -- exclusive access request wb_ack_i => wb_cpu.ack, -- transfer acknowledge wb_err_i => wb_cpu.err, -- transfer error -- Advanced memory control signals (available if MEM_EXT_EN = true) -- fence_o => open, -- indicates an executed FENCE operation fencei_o => open, -- indicates an executed FENCEI operation -- TX stream interfaces (available if SLINK_NUM_TX > 0) -- slink_tx_dat_o => slink_dat, -- output data slink_tx_val_o => slink_val, -- valid output slink_tx_rdy_i => slink_rdy, -- ready to send -- RX stream interfaces (available if SLINK_NUM_RX > 0) -- slink_rx_dat_i => slink_dat, -- input data slink_rx_val_i => slink_val, -- valid input slink_rx_rdy_o => slink_rdy, -- ready to receive -- GPIO (available if IO_GPIO_EN = true) -- gpio_o => gpio, -- parallel output gpio_i => gpio, -- parallel input -- primary UART0 (available if IO_UART0_EN = true) -- uart0_txd_o => uart0_txd, -- UART0 send data uart0_rxd_i => uart0_txd, -- UART0 receive data uart0_rts_o => uart0_cts, -- hw flow control: UART0.RX ready to receive ("RTR"), low-active, optional uart0_cts_i => uart0_cts, -- hw flow control: UART0.TX allowed to transmit, low-active, optional -- secondary UART1 (available if IO_UART1_EN = true) -- uart1_txd_o => uart1_txd, -- UART1 send data uart1_rxd_i => uart1_txd, -- UART1 receive data uart1_rts_o => uart1_cts, -- hw flow control: UART1.RX ready to receive ("RTR"), low-active, optional uart1_cts_i => uart1_cts, -- hw flow control: UART1.TX allowed to transmit, low-active, optional -- SPI (available if IO_SPI_EN = true) -- spi_sck_o => open, -- SPI serial clock spi_sdo_o => spi_data, -- controller data out, peripheral data in spi_sdi_i => spi_data, -- controller data in, peripheral data out spi_csn_o => open, -- SPI CS -- TWI (available if IO_TWI_EN = true) -- twi_sda_io => twi_sda, -- twi serial data line twi_scl_io => twi_scl, -- twi serial clock line -- PWM (available if IO_PWM_NUM_CH > 0) -- pwm_o => open, -- pwm channels -- Custom Functions Subsystem IO -- cfs_in_i => (others => '0'), -- custom CFS inputs cfs_out_o => open, -- custom CFS outputs -- NeoPixel-compatible smart LED interface (available if IO_NEOLED_EN = true) -- neoled_o => open, -- async serial data line -- System time -- mtime_i => (others => '0'), -- current system time from ext. MTIME (if IO_MTIME_EN = false) mtime_o => open, -- current system time from int. MTIME (if IO_MTIME_EN = true) -- External platform interrupts (available if XIRQ_NUM_CH > 0) -- xirq_i => gpio(31 downto 0), -- IRQ channels -- CPU Interrupts -- mtime_irq_i => '0', -- machine software interrupt, available if IO_MTIME_EN = false msw_irq_i => msi_ring, -- machine software interrupt mext_irq_i => mei_ring -- machine external interrupt ); -- TWI termination (pull-ups) -- twi_scl <= 'H'; twi_sda <= 'H'; uart0_checker: entity work.uart_rx generic map (uart0_rx_handle) port map ( clk => clk_gen, uart_txd => uart0_txd); uart1_checker: entity work.uart_rx generic map (uart1_rx_handle) port map ( clk => clk_gen, uart_txd => uart1_txd); slink_transmitters_gen: for idx in slink_transmitters'range generate slink_transmitter : entity vunit_lib.axi_stream_master generic map( master => slink_transmitters(idx) ) port map( aclk => clk_gen, tvalid => slink_transmitter_val(idx), tready => slink_transmitter_rdy(idx), std_ulogic_vector(tdata) => slink_transmitter_dat(idx) ); end generate; slink_receivers_gen: for idx in slink_receivers'range generate begin slink_receiver : entity vunit_lib.axi_stream_slave generic map( slave => slink_receivers(idx) ) port map( aclk => clk_gen, tvalid => slink_receiver_val(idx), tready => slink_receiver_rdy(idx), tdata => std_logic_vector(slink_receiver_dat(idx)) ); end generate; -- TODO: connect these to the CPU SLINK interface once the -- loopback SW has been implemented temporary_connection : for idx in slink_transmitters'range generate slink_receiver_val(idx) <= slink_transmitter_val(idx); slink_transmitter_rdy(idx) <= slink_receiver_rdy(idx); slink_receiver_dat(idx) <= slink_transmitter_dat(idx); end generate; -- Wishbone Fabric ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- -- CPU broadcast signals -- wb_mem_a.addr <= wb_cpu.addr; wb_mem_a.wdata <= wb_cpu.wdata; wb_mem_a.we <= wb_cpu.we; wb_mem_a.sel <= wb_cpu.sel; wb_mem_a.tag <= wb_cpu.tag; wb_mem_a.cyc <= wb_cpu.cyc; wb_mem_a.lock <= wb_cpu.lock; wb_mem_b.addr <= wb_cpu.addr; wb_mem_b.wdata <= wb_cpu.wdata; wb_mem_b.we <= wb_cpu.we; wb_mem_b.sel <= wb_cpu.sel; wb_mem_b.tag <= wb_cpu.tag; wb_mem_b.cyc <= wb_cpu.cyc; wb_mem_b.lock <= wb_cpu.lock; wb_mem_c.addr <= wb_cpu.addr; wb_mem_c.wdata <= wb_cpu.wdata; wb_mem_c.we <= wb_cpu.we; wb_mem_c.sel <= wb_cpu.sel; wb_mem_c.tag <= wb_cpu.tag; wb_mem_c.cyc <= wb_cpu.cyc; wb_mem_c.lock <= wb_cpu.lock; wb_irq.addr <= wb_cpu.addr; wb_irq.wdata <= wb_cpu.wdata; wb_irq.we <= wb_cpu.we; wb_irq.sel <= wb_cpu.sel; wb_irq.tag <= wb_cpu.tag; wb_irq.cyc <= wb_cpu.cyc; -- CPU read-back signals (no mux here since peripherals have "output gates") -- wb_cpu.rdata <= wb_mem_a.rdata or wb_mem_b.rdata or wb_mem_c.rdata or wb_irq.rdata; wb_cpu.ack <= wb_mem_a.ack or wb_mem_b.ack or wb_mem_c.ack or wb_irq.ack; wb_cpu.err <= wb_mem_a.err or wb_mem_b.err or wb_mem_c.err or wb_irq.err; -- peripheral select via STROBE signal -- wb_mem_a.stb <= wb_cpu.stb when (wb_cpu.addr >= ext_mem_a_base_addr_c) and (wb_cpu.addr < std_ulogic_vector(unsigned(ext_mem_a_base_addr_c) + ext_mem_a_size_c)) else '0'; wb_mem_b.stb <= wb_cpu.stb when (wb_cpu.addr >= ext_mem_b_base_addr_c) and (wb_cpu.addr < std_ulogic_vector(unsigned(ext_mem_b_base_addr_c) + ext_mem_b_size_c)) else '0'; wb_mem_c.stb <= wb_cpu.stb when (wb_cpu.addr >= ext_mem_c_base_addr_c) and (wb_cpu.addr < std_ulogic_vector(unsigned(ext_mem_c_base_addr_c) + ext_mem_c_size_c)) else '0'; wb_irq.stb <= wb_cpu.stb when (wb_cpu.addr = irq_trigger_base_addr_c) else '0'; -- Wishbone Memory A (simulated external IMEM) -------------------------------------------- -- ------------------------------------------------------------------------------------------- generate_ext_imem: if ext_imem_c generate ext_mem_a_access: process(clk_gen) variable ext_ram_a : mem32_t(0 to ext_mem_a_size_c/4-1) := mem32_init_f(application_init_image, ext_mem_a_size_c/4); -- initialized, used to simulate external IMEM begin if rising_edge(clk_gen) then -- control -- ext_mem_a.ack(0) <= wb_mem_a.cyc and wb_mem_a.stb; -- wishbone acknowledge -- write access -- if ((wb_mem_a.cyc and wb_mem_a.stb and wb_mem_a.we) = '1') then -- valid write access for i in 0 to 3 loop if (wb_mem_a.sel(i) = '1') then ext_ram_a(to_integer(unsigned(wb_mem_a.addr(index_size_f(ext_mem_a_size_c/4)+1 downto 2))))(7+i*8 downto 0+i*8) := wb_mem_a.wdata(7+i*8 downto 0+i*8); end if; end loop; -- i end if; -- read access -- ext_mem_a.rdata(0) <= ext_ram_a(to_integer(unsigned(wb_mem_a.addr(index_size_f(ext_mem_a_size_c/4)+1 downto 2)))); -- word aligned -- virtual read and ack latency -- if (ext_mem_a_latency_c > 1) then for i in 1 to ext_mem_a_latency_c-1 loop ext_mem_a.rdata(i) <= ext_mem_a.rdata(i-1); ext_mem_a.ack(i) <= ext_mem_a.ack(i-1) and wb_mem_a.cyc; end loop; end if; -- bus output register -- wb_mem_a.err <= '0'; if (ext_mem_a.ack(ext_mem_a_latency_c-1) = '1') and (wb_mem_a.cyc = '1') and (wb_mem_a.ack = '0') then wb_mem_a.rdata <= ext_mem_a.rdata(ext_mem_a_latency_c-1); wb_mem_a.ack <= '1'; else wb_mem_a.rdata <= (others => '0'); wb_mem_a.ack <= '0'; end if; end if; end process ext_mem_a_access; end generate; generate_ext_imem_false: if (ext_imem_c = false) generate wb_mem_a.rdata <= (others => '0'); wb_mem_a.ack <= '0'; wb_mem_a.err <= '0'; end generate; -- Wishbone Memory B (simulated external DMEM) -------------------------------------------- -- ------------------------------------------------------------------------------------------- ext_mem_b_access: process(clk_gen) variable ext_ram_b : mem32_t(0 to ext_mem_b_size_c/4-1) := (others => (others => '0')); -- zero, used to simulate external DMEM begin if rising_edge(clk_gen) then -- control -- ext_mem_b.ack(0) <= wb_mem_b.cyc and wb_mem_b.stb; -- wishbone acknowledge -- write access -- if ((wb_mem_b.cyc and wb_mem_b.stb and wb_mem_b.we) = '1') then -- valid write access for i in 0 to 3 loop if (wb_mem_b.sel(i) = '1') then ext_ram_b(to_integer(unsigned(wb_mem_b.addr(index_size_f(ext_mem_b_size_c/4)+1 downto 2))))(7+i*8 downto 0+i*8) := wb_mem_b.wdata(7+i*8 downto 0+i*8); end if; end loop; -- i end if; -- read access -- ext_mem_b.rdata(0) <= ext_ram_b(to_integer(unsigned(wb_mem_b.addr(index_size_f(ext_mem_b_size_c/4)+1 downto 2)))); -- word aligned -- virtual read and ack latency -- if (ext_mem_b_latency_c > 1) then for i in 1 to ext_mem_b_latency_c-1 loop ext_mem_b.rdata(i) <= ext_mem_b.rdata(i-1); ext_mem_b.ack(i) <= ext_mem_b.ack(i-1) and wb_mem_b.cyc; end loop; end if; -- bus output register -- wb_mem_b.err <= '0'; if (ext_mem_b.ack(ext_mem_b_latency_c-1) = '1') and (wb_mem_b.cyc = '1') and (wb_mem_b.ack = '0') then wb_mem_b.rdata <= ext_mem_b.rdata(ext_mem_b_latency_c-1); wb_mem_b.ack <= '1'; else wb_mem_b.rdata <= (others => '0'); wb_mem_b.ack <= '0'; end if; end if; end process ext_mem_b_access; -- Wishbone Memory C (simulated external IO) ---------------------------------------------- -- ------------------------------------------------------------------------------------------- ext_mem_c_access: process(clk_gen) begin if rising_edge(clk_gen) then -- control -- ext_mem_c.ack(0) <= wb_mem_c.cyc and wb_mem_c.stb; -- wishbone acknowledge -- write access -- if ((wb_mem_c.cyc and wb_mem_c.stb and wb_mem_c.we) = '1') then -- valid write access for i in 0 to 3 loop if (wb_mem_c.sel(i) = '1') then ext_ram_c(to_integer(unsigned(wb_mem_c.addr(index_size_f(ext_mem_c_size_c/4)+1 downto 2))))(7+i*8 downto 0+i*8) <= wb_mem_c.wdata(7+i*8 downto 0+i*8); end if; end loop; -- i end if; -- read access -- ext_mem_c.rdata(0) <= ext_ram_c(to_integer(unsigned(wb_mem_c.addr(index_size_f(ext_mem_c_size_c/4)+1 downto 2)))); -- word aligned -- virtual read and ack latency -- if (ext_mem_c_latency_c > 1) then for i in 1 to ext_mem_c_latency_c-1 loop ext_mem_c.rdata(i) <= ext_mem_c.rdata(i-1); ext_mem_c.ack(i) <= ext_mem_c.ack(i-1) and wb_mem_c.cyc; end loop; end if; -- EXCLUSIVE bus access ----------------------------------------------------- -- ----------------------------------------------------------------------------- -- Since there is only one CPU in this design, the exclusive access reservation in THIS memory CANNOT fail. -- However, this memory module is used to simulated failing LR/SC accesses. if ((wb_mem_c.cyc and wb_mem_c.stb) = '1') then -- valid access ext_mem_c_atomic_reservation <= wb_mem_c.lock; -- make reservation end if; -- ----------------------------------------------------------------------------- -- bus output register -- if (ext_mem_c.ack(ext_mem_c_latency_c-1) = '1') and (wb_mem_c.cyc = '1') and (wb_mem_c.ack = '0') then wb_mem_c.rdata <= ext_mem_c.rdata(ext_mem_c_latency_c-1); wb_mem_c.ack <= '1'; wb_mem_c.err <= ext_mem_c_atomic_reservation; -- issue a bus error if there is an exclusive access request else wb_mem_c.rdata <= (others => '0'); wb_mem_c.ack <= '0'; wb_mem_c.err <= '0'; end if; end if; end process ext_mem_c_access; -- Wishbone IRQ Triggers ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- irq_trigger: process(rst_gen, clk_gen) begin if (rst_gen = '0') then msi_ring <= '0'; mei_ring <= '0'; elsif rising_edge(clk_gen) then -- bus interface -- wb_irq.rdata <= (others => '0'); wb_irq.ack <= wb_irq.cyc and wb_irq.stb and wb_irq.we and and_reduce_f(wb_irq.sel); wb_irq.err <= '0'; -- trigger RISC-V platform IRQs -- if ((wb_irq.cyc and wb_irq.stb and wb_irq.we and and_reduce_f(wb_irq.sel)) = '1') then msi_ring <= wb_irq.wdata(03); -- machine software interrupt mei_ring <= wb_irq.wdata(11); -- machine software interrupt end if; end if; end process irq_trigger; end neorv32_tb_rtl;