
The NEORV32 RISC-V Processor
User Guide

Version v1.7.1-r133-g89629488

Documentation

The online documentation of the project (a.k.a. the data sheet) is available on
GitHub-pages: https://stnolting.github.io/neorv32/

The online documentation of the software framework is also available on GitHub-
pages: https://stnolting.github.io/neorv32/sw/files.html

The NEORV32 RISC-V Processor Visit on GitHub

1 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/
https://stnolting.github.io/neorv32/sw/files.html
https://github.com/stnolting/neorv32

Table of Contents
1. Software Toolchain Setup. 5

1.1. Building the Toolchain from Scratch . 5

1.2. Downloading and Installing a Prebuilt Toolchain . 5

1.2.1. Use The Toolchain I have Build . 6

1.2.2. Use a Third Party Toolchain . 6

1.3. Installation . 6

1.4. Testing the Installation . 6

2. General Hardware Setup . 7

3. General Software Framework Setup . 11

4. Application Program Compilation . 12

5. Uploading and Starting of a Binary Executable Image via UART . 13

6. Installing an Executable Directly Into Memory . 16

7. Setup of a New Application Program Project . 18

8. Enabling RISC-V CPU Extensions . 19

9. Application-Specific Processor Configuration. 20

9.1. Optimize for Performance . 20

9.2. Optimize for Size. 20

9.3. Optimize for Clock Speed . 21

9.4. Optimize for Energy. 22

10. Adding Custom Hardware Modules. 23

10.1. Standard (External) Interfaces . 23

10.2. External Bus Interface. 23

10.3. Stream Link Interface . 24

10.4. Custom Functions Subsystem . 24

10.5. Custom Functions Unit . 25

10.6. Comparative Summary . 25

11. Customizing the Internal Bootloader . 26

11.1. Bootloader Boot Configuration . 27

Default Boot Configuration . 27

AUTO_BOOT_SPI_EN . 28

AUTO_BOOT_OCD_EN . 28

12. Programming an External SPI Flash via the Bootloader . 29

12.1. Programming an Executable . 29

13. Packaging the Processor as IP block for Xilinx Vivado Block Designer . 31

14. Simulating the Processor . 33

14.1. Testbench . 33

14.2. Faster Simulation Console Output . 34

The NEORV32 Processor Visit on GitHub

2 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

14.3. Simulation using a shell script (with GHDL) . 35

14.4. Simulation using Application Makefiles (In-Console with GHDL) . 35

14.4.1. Hello World! . 35

14.5. Advanced Simulation using VUnit . 37

15. Building the Documentation . 39

16. Zephyr RTOS Support ᾨ� . 40

17. FreeRTOS Support . 41

18. Debugging using the On-Chip Debugger. 42

18.1. Hardware Requirements . 42

18.2. OpenOCD . 43

18.3. Debugging with GDB . 43

18.3.1. Software Breakpoints . 45

18.3.2. Hardware Breakpoints . 47

19. Legal . 48

License . 48

Proprietary Notice . 49

Disclaimer . 49

Limitation of Liability for External Links . 49

Citing . 49

Acknowledgments . 50

The NEORV32 RISC-V Processor Visit on GitHub

3 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Let’s Get It Started!

This user guide uses the NEORV32 project as is from the official neorv32 repository. To make your
first NEORV32 project run, follow the guides from the upcoming sections. It is recommended to
follow these guides step by step and eventually in the presented order.

This guide uses the minimalistic and platform/toolchain agnostic SoC test setups
from rtl/test_setups for illustration. You can use one of the provided test setups
for your first FPGA tests.

For more sophisticated example setups have a look at the neorv32-setups
repository, which provides SoC setups for various FPGAs, boards and toolchains.

The NEORV32 Processor Visit on GitHub

4 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32-setups
https://github.com/stnolting/neorv32

Chapter 1. Software Toolchain Setup
To compile (and debug) executables for the NEORV32 a RISC-V toolchain is required. There are two
possibilities to get this:

1. Download and build the official RISC-V GNU toolchain yourself.

2. Download and install a prebuilt version of the toolchain; this might also done via the package
manager / app store of your OS

The default toolchain prefix (RISCV_PREFIX variable) for this project is riscv32-
unknown-elf-. Of course you can use any other RISC-V toolchain (like riscv64-
unknown-elf-) that is capable to emit code for a rv32 architecture. Just change
RISCV_PREFIX according to your needs.

1.1. Building the Toolchain from Scratch
To build the toolchain by yourself you can follow the guide from the official https://github.com/
riscv-collab/riscv-gnu-toolchain GitHub page. You need to make sure the generated toolchain fits
the architecture of the NEORV32 core. To get a toolchain that even supports minimal ISA extension
configurations, it is recommend to compile for rv32i only. Please note that this minimal ISA also
provides further ISA extensions like m or c. Of course you can use a multilib approach to generate
toolchains for several target ISAs at once.

Listing 1. Configuring GCC build for rv32i (minimal ISA)

riscv-gnu-toolchain$./configure --prefix=/opt/riscv --with-arch=rv32i --with
-abi=ilp32
riscv-gnu-toolchain$ make

Keep in mind that - for instance - a toolchain build with --with-arch=rv32imc only
provides library code compiled with compressed (C) and mul/div instructions (M)!
Hence, this code cannot be executed (without emulation) on an architecture
without these extensions!

Make sure to use "newlib" as C standard library as the NEORV32 has no native
support for Linus-like operating systems.

1.2. Downloading and Installing a Prebuilt Toolchain
Alternatively, you can download a prebuilt toolchain.

The NEORV32 RISC-V Processor Visit on GitHub

5 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/stnolting/neorv32

1.2.1. Use The Toolchain I have Build

I have compiled a GCC toolchain on a 64-bit x86 Ubuntu (Ubuntu on Windows, actually) and
uploaded it to GitHub. You can directly download the according toolchain archive as single zip-file
within a packed release from https://github.com/stnolting/riscv-gcc-prebuilt.

Unpack the downloaded toolchain archive and copy the content to a location in your file system
(e.g. /opt/riscv). More information about downloading and installing my prebuilt toolchains can be
found in the repository’s README.

1.2.2. Use a Third Party Toolchain

Of course you can also use any other prebuilt version of the toolchain. There are a lot RISC-V GCC
packages out there - even for Windows. On Linux system you might even be able to fetch a
toolchain via your distribution’s package manager.

Make sure the toolchain can (also) emit code for a rv32i architecture, uses the
ilp32 or ilp32e ABI and was not build using CPU extensions that are not
supported by the NEORV32 (like D).

1.3. Installation
Now you have the toolchain binaries. The last step is to add them to your PATH environment
variable (if you have not already done so): make sure to add the binaries folder (bin) of your
toolchain.

$ export PATH=$PATH:/opt/riscv/bin

You should add this command to your .bashrc (if you are using bash) to automatically add the RISC-
V toolchain at every console start.

1.4. Testing the Installation
To make sure everything works fine, navigate to an example project in the NEORV32 example
folder and execute the following command:

neorv32/sw/example/blink_led$ make check

This will test all the tools required for generating NEORV32 executables. Everything is working fine
if Toolchain check OK appears at the end.

The NEORV32 Processor Visit on GitHub

6 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/riscv-gcc-prebuilt
https://github.com/stnolting/neorv32

Chapter 2. General Hardware Setup
This guide shows the basics of setting up a NEORV32 project for FPGA implementation (or
simulation only) from scratch. It uses a simplified test "SoC" setup of the processor to keeps things
simple at the beginning. This simple setup is intended for evaluation or as "hello world" project to
check out the NEORV32 on your FPGA board.

If you want to use a more sophisticated pre-defined setup to start with, check out
the setups folder, which provides example setups for various FPGA, boards and
toolchains.

The NEORV32 project features two minimalistic pre-configured test setups in rtl/test_setups. Both
test setups only implement very basic processor and CPU features. The main difference between
the two setups is the processor boot concept - so how to get a software executable into the
processor:

• rtl/test_setups/neorv32_testsetup_approm.vhd: this setup does not require a connection via
UART. The software executable is "installed" into the bitstream to initialize a read-only memory.
Use this setup if your FPGA board does not provide a UART interface.

• rtl/test_setups/neorv32_testsetup_bootloader.vhd: this setups uses the UART and the default
NEORV32 bootloader to upload new software executables. Use this setup if your board does
provide a UART interface.

Figure 1. NEORV32 "hello world" test setup (rtl/test_setups/neorv32_testsetup_bootloader.vhd)

The NEORV32 RISC-V Processor Visit on GitHub

7 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32/blob/main/rtl/test_setups
https://github.com/stnolting/neorv32

External Clock Source

These test setups are intended to be directly used as design top entity. Of course
you can also instantiate them into another design unit. If your FPGA board only
provides very fast external clock sources (like on the FOMU board) you might need
to add clock management components (PLLs, DCMs, MMCMs, …) to the test setup
or to the according top entity if you instantiate one of the test setups.

1. Create a new project with your FPGA EDA tool of choice.

2. Add all VHDL files from the project’s rtl/core folder to your project.

Internal Memories

For a general first setup (technology-independent) use the *.default.vhd memory
architectures for the internal memories (IMEM and DMEM). These are located in
rtl/core/mem so make sure to add the files to your project, too.

If synthesis cannot efficiently map those default memory descriptions to the
available memory resources, you can later replace the default memory
architectures by optimized platform-specific memory architectures. Example: The
neorv32-setups/radiant/UPduino_v3 example setup uses optimized memory
primitives. Hence, it does not include the default memory architectures from
rtl/core/mem as these are replaced by device-specific implementations. However, it
still has to include the entity definitions from rtl/core.

3. Make sure to add all the rtl files to a new library called neorv32. If your FPGA tools does not
provide a field to enter the library name, check out the "properties" menu of the added rtl files.

Compile order

Some tools (like Lattice Radiant) might require a manual compile order of the
VHDL source files to identify the dependencies. The package file
neorv32_package.vhd should be analyzed first followed by the memory image files
(neorv32_application_imagevhd and neorv32_bootloader_image.vhd) and the entity-
only files (neorv32_*mem.entity.vhd).

4. The rtl/core/neorv32_top.vhd VHDL file is the top entity of the NEORV32 processor, which can
be instantiated into the "real" project. However, in this tutorial we will use one of the pre-
defined test setups from rtl/test_setups (see above).

Make sure to include the neorv32 package into your design when instantiating the
processor: add library neorv32; and use neorv32.neorv32_package.all; to your
design unit.

5. Add the pre-defined test setup of choice to the project, too, and select it as top entity.

6. The entity of both test setups provide a minimal set of configuration generics, that might have to
be adapted to match your FPGA and board:

The NEORV32 Processor Visit on GitHub

8 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Listing 2. Test setup entity - configuration generics

 generic (
 -- adapt these for your setup --
 CLOCK_FREQUENCY : natural := 100000000; ①
 MEM_INT_IMEM_SIZE : natural := 16*1024; ②
 MEM_INT_DMEM_SIZE : natural := 8*1024 ③
);

① Clock frequency of clk_i signal in Hertz

② Default size of internal instruction memory: 16kB

③ Default size of internal data memory: 8kB

7. If you feel like it - or if your FPGA does not provide sufficient resources - you can modify the
memory sizes (MEM_INT_IMEM_SIZE and MEM_INT_DMEM_SIZE - marked with notes "2" and "3"). But as
mentioned above, let’s keep things simple at first and use the standard configuration for now.

8. There is one generic that has to be set according to your FPGA board setup: the actual clock
frequency of the top’s clock input signal (clk_i). Use the CLOCK_FREQUENCY generic to specify your
clock source’s frequency in Hertz (Hz).

If you have changed the default memory configuration (MEM_INT_IMEM_SIZE and
MEM_INT_DMEM_SIZE generics) keep those new sizes in mind - these values are
required for setting up the software framework in the next section General
Software Framework Setup.

9. Depending on your FPGA tool of choice, it is time to assign the signals of the test setup top entity
to the according pins of your FPGA board. All the signals can be found in the entity declaration
of the corresponding test setup:

Listing 3. Entity signals of neorv32_testsetup_approm.vhd

 port (
 -- Global control --
 clk_i : in std_ulogic; -- global clock, rising edge
 rstn_i : in std_ulogic; -- global reset, low-active, async
 -- GPIO --
 gpio_o : out std_ulogic_vector(7 downto 0) -- parallel output
);

The NEORV32 RISC-V Processor Visit on GitHub

9 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Listing 4. Entity signals of neorv32_testsetup_bootloader.vhd

 port (
 -- Global control --
 clk_i : in std_ulogic; -- global clock, rising edge
 rstn_i : in std_ulogic; -- global reset, low-active, async
 -- GPIO --
 gpio_o : out std_ulogic_vector(7 downto 0); -- parallel output
 -- UART0 --
 uart0_txd_o : out std_ulogic; -- UART0 send data
 uart0_rxd_i : in std_ulogic -- UART0 receive data
);

Signal Polarity

If your FPGA board has inverse polarity for certain input/output you can add not
gates. Example: The reset signal rstn_i is low-active by default; the LEDs
connected to gpio_o high-active by default. You can do this in your board top if you
instantiate the test setup, or inside the test setup if this is your top entity (low-
active LEDs example: gpio_o ⇐ NOT con_gpio_o(7 downto 0);).

10. Attach the clock input clk_i to your clock source and connect the reset line rstn_i to a button of
your FPGA board. Check whether it is low-active or high-active - the reset signal of the processor
is low-active, so maybe you need to invert the input signal.

11. If possible, connected at least bit 0 of the GPIO output port gpio_o to a LED (see "Signal Polarity"
note above).

12. Finally, if your are using the UART-based test setup (neorv32_testsetup_bootloader.vhd) connect
the UART communication signals uart0_txd_o and uart0_rxd_i to the host interface (e.g. USB-
UART converter).

13. Perform the project HDL compilation (synthesis, mapping, bitstream generation).

14. Program the generated bitstream into your FPGA and press the button connected to the reset
signal.

15. Done! The LED at gpio_o(0) should be flashing now.

After the GCC toolchain for compiling RISC-V source code is ready (chapter General
Software Framework Setup), you can advance to one of these chapters to learn
how to get a software executable into your processor setup: * If you are using the
neorv32_testsetup_approm.vhd setup: See section Installing an Executable Directly
Into Memory. * If you are using the neorv32_testsetup_bootloader.vhd setup: See
section Uploading and Starting of a Binary Executable Image via UART.

The NEORV32 Processor Visit on GitHub

10 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 3. General Software Framework
Setup
To allow executables to be actually executed on the NEORV32 Processor the configuration of the
software framework has to be aware to the hardware configuration. This guide focuses on the
memory configuration. To enabled certain CPU ISA features refer to the Enabling RISC-V CPU
Extensions section.

If you have not changed the default memory configuration in section General
Hardware Setup you are already done and you can skip the rest of this guide.

1. Open the NEORV32 linker script sw/common/neorv32.ld with a text editor. Right at the beginning
of this script you will find the MEMORY configuration listing the different memory section:

Listing 5. Cut-out of the linker script neorv32.ld: ram memory section configuration

MEMORY
{
 ram (rwx) : ORIGIN = 0x80000000, LENGTH = DEFINED(make_bootloader) ? 512 : 8*1024
①
...

① Size of the data memory address space (right-most value) (internal/external DMEM); here 8kB

2. We only need to change the ram section, which presents the available data address space. If you
have changed the DMEM (MEM_INT_DMEM_SIZE generic) size adapt the LENGTH parameter of
the ram section (here: 8*1024) so it is equal to your DMEM hardware configuration.

Make sure you only modify the right-most value (here: 8*1024)!
The “512” are not relevant for the application.

3. Done! Save your changes and close the linker script.

Advanced: Section base address and size

More information can be found in the datasheet section Address Space.

The NEORV32 RISC-V Processor Visit on GitHub

11 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/#_address_space
https://github.com/stnolting/neorv32

Chapter 4. Application Program Compilation
This guide shows how to compile an example C-code application into a NEORV32 executable that
can be uploaded via the bootloader or the on-chip debugger.

If your FPGA board does not provide such an interface - don’t worry! Section
Installing an Executable Directly Into Memory shows how to run custom programs
on your FPGA setup without having a UART.

1. Open a terminal console and navigate to one of the project’s example programs. For instance,
navigate to the simple sw/example_blink_led example program. This program uses the NEORV32
GPIO module to display an 8-bit counter on the lowest eight bit of the gpio_o output port.

2. To compile the project and generate an executable simply execute:

neorv32/sw/example/blink_led$ make clean_all exe

3. We are using the clean_all target to make sure everything is re-build.

4. This will compile and link the application sources together with all the included libraries. At the
end, your application is transformed into an ELF file (main.elf). The NEORV32 image generator
(in sw/image_gen) takes this file and creates a final executable. The makefile will show the
resulting memory utilization and the executable size:

neorv32/sw/example/blink_led$ make clean_all exe
Memory utilization:
 text data bss dec hex filename
 3176 0 120 3296 ce0 main.elf
Compiling ../../../sw/image_gen/image_gen
Executable (neorv32_exe.bin) size in bytes:
3188

Make sure the size of the text segment (3176 bytes here) does not overflow the size
of the processor’s IMEM (if used at all) - otherwise there will be an error during
synthesis or during bootloader upload.

5. That’s it. The exe target has created the actual executable neorv32_exe.bin in the current folder
that is ready to be uploaded to the processor.

The compilation process will also create a main.asm assembly listing file in the
current folder, which shows the actual assembly code of the application.

The NEORV32 Processor Visit on GitHub

12 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 5. Uploading and Starting of a
Binary Executable Image via UART
Follow this guide to use the bootloader to upload an executable via UART.

This concept uses the default "Indirect Boot" scenario that uses the bootloader to
upload new executables. See datasheet section Indirect Boot for more information.

If your FPGA board does not provide such an interface - don’t worry! Section
Installing an Executable Directly Into Memory shows how to run custom programs
on your FPGA setup without having a UART.

1. Connect the primary UART (UART0) interface of your FPGA board to a serial port of your host
computer.

2. Start a terminal program. In this tutorial, I am using TeraTerm for Windows. You can download
it for free from https://ttssh2.osdn.jp/index.html.en . On Linux you could use cutecom
(recommended) or GTKTerm, which you can get here https://github.com/Jeija/gtkterm.git (or
install via your package manager).

Any terminal program that can connect to a serial port should work. However,
make sure the program can transfer data in raw byte mode without any protocol
overhead around it. Some terminal programs struggle with transmitting files
larger than 4kB (see https://github.com/stnolting/neorv32/pull/215). Try a different
program if uploading a binary does not work (terminal stall).

3. Open a connection to the the serial port your UART is connected to. Configure the terminal
setting according to the following parameters:

◦ 19200 Baud

◦ 8 data bits

◦ 1 stop bit

◦ no parity bits

◦ no transmission/flow control protocol

◦ receiver (host computer) newline on \r\n (carriage return & newline)

4. Also make sure that single chars are send from your computer without any consecutive "new
line" or "carriage return" commands (this is highly dependent on your terminal application of
choice, TeraTerm only sends the raw chars by default).

5. Press the NEORV32 reset button to restart the bootloader. The status LED starts blinking and the
bootloader intro screen appears in your console. Hurry up and press any key (hit space!) to
abort the automatic boot sequence and to start the actual bootloader user interface console.

The NEORV32 RISC-V Processor Visit on GitHub

13 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/#_indirect_boot
https://ttssh2.osdn.jp/index.html.en
https://github.com/Jeija/gtkterm.git
https://github.com/stnolting/neorv32/pull/215
https://github.com/stnolting/neorv32

Listing 6. Bootloader console; aborted auto-boot sequence

<< NEORV32 Bootloader >>

BLDV: Feb 16 2022
HWV: 0x01060709
CLK: 0x05f5e100
ISA: 0x40901107 + 0xc000068b
SOC: 0x7b7f402f
IMEM: 0x00008000 bytes @0x00000000
DMEM: 0x00004000 bytes @0x80000000

Autoboot in 8s. Press any key to abort.
Aborted.

Available commands:
 h: Help
 r: Restart
 u: Upload
 s: Store to flash
 l: Load from flash
 e: Execute
CMD:>

6. Execute the "Upload" command by typing u. Now the bootloader is waiting for a binary
executable to be send.

CMD:> u
Awaiting neorv32_exe.bin...

7. Use the "send file" option of your terminal program to send a NEORV32 executable
(neorv32_exe.bin).

8. Again, make sure to transmit the executable in raw binary mode (no transfer protocol). When
using TeraTerm, select the "binary" option in the send file dialog.

9. If everything went fine, OK will appear in your terminal:

CMD:> u
Awaiting neorv32_exe.bin... OK

10. The executable is now in the instruction memory of the processor. To execute the program right
now run the "Execute" command by typing e:

The NEORV32 Processor Visit on GitHub

14 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

CMD:> u
Awaiting neorv32_exe.bin... OK
CMD:> e
Booting...
Blinking LED demo program

11. If everything went fine, you should see the LEDs blinking.

The bootloader will print error codes if something went wrong. See section
Bootloader of the NEORV32 datasheet for more information.

See section Programming an External SPI Flash via the Bootloader to learn how to
use an external SPI flash for nonvolatile program storage.

Executables can also be uploaded via the on-chip debugger. See section
Debugging with GDB for more information.

The NEORV32 RISC-V Processor Visit on GitHub

15 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/#_bootloader
https://github.com/stnolting/neorv32

Chapter 6. Installing an Executable Directly
Into Memory
If you do not want to use the bootloader (or the on-chip debugger) for executable upload or if your
setup does not provide a serial interface for that, you can also directly install an application into
embedded memory.

This concept uses the "Direct Boot" scenario that implements the processor-internal IMEM as ROM,
which is pre-initialized with the application’s executable during synthesis. Hence, it provides non-
volatile storage of the executable inside the processor. This storage cannot be altered during
runtime and any source code modification of the application requires to re-program the FPGA via
the bitstream.

See datasheet section Direct Boot for more information.

Using the IMEM as ROM:

• for this boot concept the bootloader is no longer required

• this concept only works for the internal IMEM (but can be extended to work with external
memories coupled via the processor’s bus interface)

• make sure that the memory components (like block RAM) the IMEM is mapped to support an
initialization via the bitstream

1. At first, make sure your processor setup actually implements the internal IMEM: the
MEM_INT_IMEM_EN generics has to be set to true:

Listing 7. Processor top entity configuration - enable internal IMEM

 -- Internal Instruction memory --
 MEM_INT_IMEM_EN => true, -- implement processor-internal instruction memory

2. For this setup we do not want the bootloader to be implemented at all. Disable implementation
of the bootloader by setting the INT_BOOTLOADER_EN generic to false. This will also modify the
processor-internal IMEM so it is initialized with the executable during synthesis.

Listing 8. Processor top entity configuration - disable internal bootloader

 -- General --
 INT_BOOTLOADER_EN => false, -- boot configuration: false = boot from int/ext (I)MEM

3. To generate an "initialization image" for the IMEM that contains the actual application, run the
install target when compiling your application:

The NEORV32 Processor Visit on GitHub

16 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/#_direct_boot
https://github.com/stnolting/neorv32

neorv32/sw/example/blink_led$ make clean_all install
Memory utilization:
 text data bss dec hex filename
 3176 0 120 3296 ce0 main.elf
Compiling ../../../sw/image_gen/image_gen
Installing application image to ../../../rtl/core/neorv32_application_image.vhd

4. The install target has compiled all the application sources but instead of creating an executable
(neorv32_exe.bit) that can be uploaded via the bootloader, it has created a VHDL memory
initialization image core/neorv32_application_image.vhd.

5. This VHDL file is automatically copied to the core’s rtl folder (rtl/core) so it will be included for
the next synthesis.

6. Perform a new synthesis. The IMEM will be build as pre-initialized ROM (inferring embedded
memories if possible).

7. Upload your bitstream. Your application code now resides unchangeable in the processor’s
IMEM and is directly executed after reset.

The synthesis tool / simulator will print asserts to inform about the (IMEM) memory / boot
configuration:

NEORV32 PROCESSOR CONFIG NOTE: Boot configuration: Direct boot from memory (processor-
internal IMEM).
NEORV32 PROCESSOR CONFIG NOTE: Implementing processor-internal IMEM as ROM (3176
bytes), pre-initialized with application.

The NEORV32 RISC-V Processor Visit on GitHub

17 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Chapter 7. Setup of a New Application
Program Project
1. The easiest way of creating a new software application project is to copy an existing one. This

will keep all file dependencies. For example you can copy sw/example/blink_led to
sw/example/flux_capacitor.

2. If you want to place you application somewhere outside sw/example you need to adapt the
application’s makefile. In the makefile you will find a variable that keeps the relative or
absolute path to the NEORV32 repository home folder. Just modify this variable according to
your new project’s home location:

Relative or absolute path to the NEORV32 home folder (use default if not set by
user)
NEORV32_HOME ?= ../../..

3. If your project contains additional source files outside of the project folder, you can add them to
the APP_SRC variable:

User's application sources (add additional files here)
APP_SRC = $(wildcard *.c) ../somewhere/some_file.c

4. You also can add a folder containing your application’s include files to the APP_INC variable (do
not forget the -I prefix):

User's application include folders (don't forget the '-I' before each entry)
APP_INC = -I . -I ../somewhere/include_stuff_folder

The NEORV32 Processor Visit on GitHub

18 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 8. Enabling RISC-V CPU Extensions
Whenever you enable/disable a RISC-V CPU extensions via the according CPU_EXTENSION_RISCV_x
generic, you need to adapt the toolchain configuration so the compiler can actually generate
according code for it.

To do so, open the makefile of your project (for example sw/example/blink_led/makefile) and scroll
to the "USER CONFIGURATION" section right at the beginning of the file. You need to modify the
MARCH variable and eventually the MABI variable according to your CPU hardware configuration.

CPU architecture and ABI
MARCH ?= rv32i ①
MABI ?= ilp32 ②

① MARCH = Machine architecture ("ISA string")

② MABI = Machine binary interface

For example, if you enable the RISC-V C extension (16-bit compressed instructions) via the
CPU_EXTENSION_RISCV_C generic (set true) you need to add the c extension also to the MARCH ISA string
in order to make the compiler emit compressed instructions.

Privileged Architecture Extensions

Privileged architecture extensions like Zicsr or Zifencei are "used" implicitly by
the compiler. Hence, according instruction will only be generated when "encoded"
via inline assembly or when linking according libraries. In this case, these
instruction will always be emitted (even if the according extension is not specified
in MARCH).
I recommend to not specify any privileged architecture extensions in MARCH.

ISA extension enabled in hardware can be a superset of the extensions enabled in
software, but not the other way around. For example generating compressed
instructions for a CPU configuration that has the c extension disabled will cause
illegal instruction exceptions at runtime.

You can also override the default MARCH and MABI configurations from the makefile when invoking
the makefile:

$ make MARCH=rv32ic clean_all all

The RISC-V ISA string for MARCH follows a certain canonical structure:
rev32[i/e][m][a][f][d][g][q][c][b][v][n]… For example rv32imac is valid while
rv32icma is not.

The NEORV32 RISC-V Processor Visit on GitHub

19 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

Chapter 9. Application-Specific Processor
Configuration
Due to the processor’s configuration options, which are mainly defined via the top entity VHDL
generics, the SoC can be tailored to the application-specific requirements. Note that this chapter
does not focus on optional SoC features like IO/peripheral modules. It rather gives ideas on how to
optimize for overall goals like performance and area.

Please keep in mind that optimizing the design in one direction (like performance)
will also effect other potential optimization goals (like area and energy).

9.1. Optimize for Performance
The following points show some concepts to optimize the processor for performance regardless of
the costs (i.e. increasing area and energy requirements):

• Enable all performance-related RISC-V CPU extensions that implement dedicated hardware
accelerators instead of emulating operations entirely in software: M, C, Zfinx

• Enable mapping of compleX CPU operations to dedicated hardware: FAST_MUL_EN ⇒ true to use
DSP slices for multiplications, FAST_SHIFT_EN ⇒ true use a fast barrel shifter for shift operations.

• Implement the instruction cache: ICACHE_EN ⇒ true

• Use as many internal memory as possible to reduce memory access latency: MEM_INT_IMEM_EN ⇒
true and MEM_INT_DMEM_EN ⇒ true, maximize MEM_INT_IMEM_SIZE and MEM_INT_DMEM_SIZE

• Increase the CPU’s instruction prefetch buffer size: CPU_IPB_ENTRIES (recommended value is >=
4)

• To be continued…

9.2. Optimize for Size
The NEORV32 is a size-optimized processor system that is intended to fit into tiny niches within
large SoC designs or to be used a customized microcontroller in really tiny / low-power FPGAs (like
Lattice iCE40). Here are some ideas how to make the processor even smaller while maintaining it’s
general purpose system concept and maximum RISC-V compatibility.

SoC

• This is obvious, but exclude all unused optional IO/peripheral modules from synthesis via the
processor configuration generics.

• If an IO module provides an option to configure the number of "channels", constrain this
number to the actually required value (e.g. the PWM module IO_PWM_NUM_CH or the external
interrupt controller XIRQ_NUM_CH).

• Reduce the FIFO sizes of implemented modules (e.g. SLINK_TX_FIFO).

The NEORV32 Processor Visit on GitHub

20 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

• Disable the instruction cache (ICACHE_EN ⇒ false) if the design only uses processor-internal
IMEM and DMEM memories.

• To be continued…

CPU

• Use the embedded RISC-V CPU architecture extension (CPU_EXTENSION_RISCV_E) to reduce block
RAM utilization.

• The compressed instructions extension (CPU_EXTENSION_RISCV_C) requires additional logic for the
decoder but also reduces program code size by approximately 30%.

• If not explicitly used/required, constrain the CPU’s counter sizes: CPU_CNT_WIDTH for
[m]instret[h] (number of instruction) and [m]cycle[h] (number of cycles) counters. You can
even remove these counters by setting CPU_CNT_WIDTH ⇒ 0 if they are not used at all (note, this is
not RISC-V compliant).

• Reduce the CPU’s prefetch buffer size (CPU_IPB_ENTRIES).

• Map CPU shift operations to a small and iterative shifter unit (FAST_SHIFT_EN ⇒ false).

• If you have unused DSP block available, you can map multiplication operations to those slices
instead of using LUTs to implement the multiplier (FAST_MUL_EN ⇒ true).

• If there is no need to execute division in hardware, use the Zmmul extension instead of the full-
scale M extension.

• Disable CPU extension that are not explicitly used (A, U, Zfinx).

• To be continued…

9.3. Optimize for Clock Speed
The NEORV32 Processor and CPU are designed to provide minimal logic between register stages to
keep the critical path as short as possible. When enabling additional extension or modules the
impact on the existing logic is also kept at a minimum to prevent timing degrading. If there is a
major impact on existing logic (example: many physical memory protection address configuration
registers) the VHDL code automatically adds additional register stages to maintain critical path
length. Obviously, this increases operation latency.

In order to optimize for a minimal critical path (= maximum clock speed) the following points
should be considered:

• Complex CPU extensions (in terms of hardware requirements) should be avoided (examples:
floating-point unit, physical memory protection).

• Large carry chains (>32-bit) should be avoided (constrain CPU counter sizes: e.g. CPU_CNT_WIDTH
⇒ 32 and HPM_NUM_CNTS ⇒ 32).

• If the target FPGA provides sufficient DSP resources, CPU multiplication operations can be
mapped to DSP slices (FAST_MUL_EN ⇒ true) reducing LUT usage and critical path impact while
also increasing overall performance.

The NEORV32 RISC-V Processor Visit on GitHub

21 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

• Use the synchronous (registered) RX path configuration of the external memory interface
(MEM_EXT_ASYNC_RX ⇒ false).

• To be continued…

The short and fixed-length critical path allows to integrate the core into existing
clock domains. So no clock domain-crossing and no sub-clock generation is
required. However, for very high clock frequencies (this is technology / platform
dependent) clock domain crossing becomes crucial for chip-internal connections.

9.4. Optimize for Energy
There are no dedicated configuration options to optimize the processor for energy (minimal
consumption; energy/instruction ratio) yet. However, a reduced processor area (Optimize for Size)
will also reduce static energy consumption.

To optimize your setup for low-power applications, you can make use of the CPU sleep mode (wfi
instruction). Put the CPU to sleep mode whenever possible. Disable all processor modules that are
not actually used (exclude them from synthesis if the will be never used; disable the module via it’s
control register if the module is not currently used). When is sleep mode, you can keep a timer
module running (MTIME or the watch dog) to wake up the CPU again. Since the wake up is
triggered by any interrupt, the external interrupt controller can also be used to wake up the CPU
again. By this, all timers (and all other modules) can be deactivated as well.

Processor-internal clock generator shutdown

If no IO/peripheral module is currently enabled, the processor’s internal clock
generator circuit will be shut down reducing switching activity and thus, dynamic
energy consumption.

The NEORV32 Processor Visit on GitHub

22 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 10. Adding Custom Hardware
Modules
In resemblance to the RISC-V ISA, the NEORV32 processor was designed to ease customization and
extensibility. The processor provides several predefined options to add application-specific custom
hardware modules and accelerators. A Comparative Summary is given at the end of this section.

Debugging/Testing Custom Hardware Modules

Custom hardware IP modules connected via the external bus interface or
integrated as CFU can be debugged "in-system" using the "bus explorer" example
program (sw/example_bus_explorer). This program provides an interactive console
(via UART0) that allows to perform arbitrary read and write access from/to any
memory-mapped register.

10.1. Standard (External) Interfaces
The processor already provides a set of standard interfaces that are intended to connect chip-
external devices. However, these interfaces can also be used chip-internally. The most suitable
interfaces are GPIO, UART, SPI and TWI.

The SPI and especially the GPIO interfaces might be the most straightforward approaches since
they have a minimal protocol overhead. Device-specific interrupt capabilities could be added using
the External Interrupt Controller (XIRQ).

Beyond simplicity, these interface only provide a very limited bandwidth and require more
sophisticated software handling ("bit-banging" for the GPIO). Hence, it is not recommend to use
them for chip-internal communication.

10.2. External Bus Interface
The External Bus Interface provides the classic approach for attaching custom IP. By default, the
bus interface implements the widely adopted Wishbone interface standard. This project also
includes wrappers to convert to other protocol standards like ARM’s AXI4-Lite or Intel’s Avalon
protocols. By using a full-featured bus protocol, complex SoC designs can be implemented including
several modules and even multi-core architectures. Many FPGA EDA tools provide graphical editors
to build and customize whole SoC architectures and even include pre-defined IP libraries.

The NEORV32 RISC-V Processor Visit on GitHub

23 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/#_general_purpose_input_and_output_port_gpio
https://stnolting.github.io/neorv32/#_primary_universal_asynchronous_receiver_and_transmitter_uart0
https://stnolting.github.io/neorv32/#_serial_peripheral_interface_controller_spi
https://stnolting.github.io/neorv32/#_two_wire_serial_interface_controller_twi
https://stnolting.github.io/neorv32/#_external_interrupt_controller_xirq
https://stnolting.github.io/neorv32/#_processor_external_memory_interface_wishbone_axi4_lite
https://github.com/stnolting/neorv32

Figure 2. Example AXI SoC using Xilinx Vivado

Custom hardware modules attached to the processor’s bus interface have no limitations regarding
their functionality. User-defined interfaces (like DDR memory access) can be implemented and the
hardware module can operate completely independent of the CPU.

The bus interface uses a memory-mapped approach. All data transfers are handled by simple
load/store operations since the external bus interface is mapped into the processor’s address space.
This allows a very simple still high-bandwidth communications. However, high bus traffic may
increase access latencies.

10.3. Stream Link Interface
The Stream Link Interface (SLINK) provides a point-to-point, unidirectional and parallel data
interface that can be used to transfer streaming data. In contrast to the external bus interface, the
streaming interface does not provide any kind of advanced control, so it can be seen as "constant
address bursts" where data is transmitted sequentially (no random accesses). While the CPU needs
to "feed" the stream link interfaces with data (and read back incoming data), the actual processor-
external processing of the data run independently of the CPU.

The stream link interface provides less protocol overhead and less latency than the bus interface.
Furthermore, FIFOs can be be configured to each direction (RX/TX) to allow more CPU-independent
operation.

10.4. Custom Functions Subsystem
The Custom Functions Subsystem (CFS) is an "empty" template for a memory-mapped, processor-
internal module.

The basic idea of this subsystem is to provide a convenient, simple and flexible platform, where the
user can concentrate on implementing the actual design logic rather than taking care of the
communication between the CPU/software and the design logic. Note that the CFS does not have
direct access to memory. All data (and control instruction) have to be send by the CPU.

The NEORV32 Processor Visit on GitHub

24 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/#_address_space
https://stnolting.github.io/neorv32/#_stream_link_interface_slink
https://stnolting.github.io/neorv32/#_custom_functions_subsystem_cfs
https://github.com/stnolting/neorv32

The use-cases for the CFS include medium-scale hardware accelerators that need to be tightly-
coupled to the CPU. Potential use cases could be DSP modules like CORDIC, cryptographic
accelerators or custom interfaces (like IIS).

10.5. Custom Functions Unit
The Custom Functions Unit (CFU) is a functional unit that is integrated right into the CPU’s pipeline.
It allows to implement custom RISC-V instructions. This extension option is intended for rather
small logic that implements operations, which cannot be emulated in pure software in an efficient
way. Since the CFU has direct access to the core’s register file it can operate with minimal data
latency.

10.6. Comparative Summary
The following table gives a comparative summary of the most important factors when choosing one
of the chip-internal extension options:

• Custom Functions Unit for CPU-internal custom RISC-V instructions

• Custom Functions Subsystem for tightly-coupled processor-internal co-processors

• Stream Link Interface for processor-external streaming modules

• External Bus Interface for processor-external memory-mapped modules

Table 1. Comparison of On-Chip Extension Options

Custom
Functions Unit

Custom
Functions
Subsystem

Stream Link
Interface

External Bus
Interface

SoC location CPU-internal processor-internal processor-external processor-external

HW
complexity/size

small medium large large

CPU-independent
operation

no yes yes yes

CPU interface register-file access memory-mapped memory-mapped memory-mapped

Low-level access
mechanism

custom
instructions

load/store load/store load/store

Arbitrary
accesses

yes yes no, only
sequential

yes

Access latency minimal low low medium to high

External IO
interfaces

no yes, but limited yes yes

Interrupt-
capable

no yes yes user-defined

The NEORV32 RISC-V Processor Visit on GitHub

25 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/#_custom_functions_unit_cfu
https://stnolting.github.io/neorv32/#_custom_functions_unit_cfu
https://stnolting.github.io/neorv32/#_custom_functions_subsystem_cfs
https://stnolting.github.io/neorv32/#_stream_link_interface_slink
https://stnolting.github.io/neorv32/#_processor_external_memory_interface_wishbone_axi4_lite
https://github.com/stnolting/neorv32

Chapter 11. Customizing the Internal
Bootloader
The NEORV32 bootloader provides several options to configure and customize it for a certain
application setup. This configuration is done by passing defines when compiling the bootloader. Of
course you can also modify to bootloader source code to provide a setup that perfectly fits your
needs.

Each time the bootloader sources are modified, the bootloader has to be re-
compiled (and re-installed to the bootloader ROM) and the processor has to be re-
synthesized.

Keep in mind that the maximum size for the bootloader is limited to 32kB and
should be compiled using the base ISA rv32i only to ensure it can work
independently of the actual CPU configuration.

Table 2. Bootloader configuration parameters

Parameter Default Legal values Description

Serial console interface

UART_EN 1 0, 1 Set to 0 to disable UART0 (no serial console at all)

UART_BAUD 19200 any Baud rate of UART0

Status LED

STATUS_LED_EN 1 0, 1 Enable bootloader status led ("heart beat") at GPIO
output port pin #STATUS_LED_PIN when 1

STATUS_LED_PIN 0 0 … 31 GPIO output pin used for the high-active status LED

Boot configuration

AUTO_BOOT_SPI_EN 0 0, 1 Set 1 to enable immediate boot from external SPI
flash

AUTO_BOOT_OCD_EN 0 0, 1 Set 1 to enable boot via on-chip debugger (OCD)

AUTO_BOOT_TIMEOU
T

8 any Time in seconds after the auto-boot sequence starts
(if there is no UART input by user); set to 0 to
disabled auto-boot sequence

SPI configuration

SPI_EN 1 0, 1 Set 1 to enable the usage of the SPI module (including
load/store executables from/to SPI flash options)

SPI_FLASH_CS 0 0 … 7 SPI chip select output (spi_csn_o) for selecting flash

SPI_FLASH_ADDR_B
YTES

3 2, 3, 4 SPI flash address size in number of bytes (2=16-bit,
3=24-bit, 4=32-bit)

The NEORV32 Processor Visit on GitHub

26 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Parameter Default Legal values Description

SPI_FLASH_SECTOR
_SIZE

65536 any SPI flash sector size in bytes

SPI_FLASH_CLK_PR
SC

CLK_PRS
C_8

CLK_PRSC_2
CLK_PRSC_4
CLK_PRSC_8
CLK_PRSC_64
CLK_PRSC_128
CLK_PRSC_1024
CLK_PRSC_2024
CLK_PRSC_4096

SPI clock pre-scaler (dividing main processor clock)

SPI_BOOT_BASE_AD
DR

0x08000
000

any 32-bit value Defines the base address of the executable in
external flash

Each configuration parameter is implemented as C-language define that can be manually
overridden (redefined) when invoking the bootloader’s makefile. The according parameter and its
new value has to be appended (using +=) to the makefile USER_FLAGS variable. Make sure to use the -D
prefix here.

For example, to configure a UART Baud rate of 57600 and redirecting the status LED to output pin
20 use the following command (in the bootloader’s source folder sw/bootloader):

Listing 9. Example: customizing, re-compiling and re-installing the bootloader

$ make USER_FLAGS+=-DUART_BAUD=57600 USER_FLAGS+=-DSTATUS_LED_PIN=20 clean_all
bootloader

The clean_all target ensure that all libraries are re-compiled. The bootloader target
will automatically compile and install the bootloader to the HDL boot ROM
(updating rtl/core/neorv32_bootloader_image.vhd).

11.1. Bootloader Boot Configuration
The bootloader provides several boot configurations that define where the actual application’s
executable shall be fetched from. Note that the non-default boot configurations provide a smaller
memory footprint reducing boot ROM implementation costs.

Default Boot Configuration

The default bootloader configuration provides a UART-based user interface that allows to upload
new executables at any time. Optionally, the executable can also be programmed to an external SPI
flash by the bootloader (see section Programming an External SPI Flash via the Bootloader).

This configuration also provides an automatic boot sequence (auto-boot) which will start fetching an
executable from external SPI flash using the default SPI configuration. By this, the default

The NEORV32 RISC-V Processor Visit on GitHub

27 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

bootloader configuration provides a "non volatile program storage" mechanism that automatically
boot from external SPI flash (after AUTO_BOOT_TIMEOUT) while still providing the option to re-program
SPI flash at any time via the UART interface.

AUTO_BOOT_SPI_EN

The automatic boot from SPI flash (enabled when AUTO_BOOT_SPI_EN is 1) will fetch an executable
from an external SPI flash (using the according SPI configuration) right after reset. The bootloader
will start fetching the image at SPI flash base address SPI_BOOT_BASE_ADDR.

Note that there is no UART console to interact with the bootloader. However, this boot configuration
will output minimal status messages via UART (if UART_EN is 1).

AUTO_BOOT_OCD_EN

If AUTO_BOOT_OCD_EN is 1 the bootloader is implemented as minimal "halt loop" to be used with the
on-chip debugger. After initializing the hardware, the CPU waits in this endless loop until the on-
chip debugger takes control over the core (to upload and run the actual executable). See section
Debugging using the On-Chip Debugger for more information on how to use the on-chip debugger
to upload and run executables.

All bootloader boot configuration support uploading new executables via the on-
chip debugger.

Note that this boot configuration does not load any executable at all! Hence, this
boot configuration is intended to be used with the on-chip debugger only.

The NEORV32 Processor Visit on GitHub

28 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 12. Programming an External SPI
Flash via the Bootloader
The default processor-internal NEORV32 bootloader supports automatic booting from an external
SPI flash. This guide shows how to write an executable to the SPI flash via the bootloader so it can
be automatically fetched and executed after processor reset. For example, you can use a section of
the FPGA bitstream configuration memory to store an application executable.

This section assumes the default configuration of the NEORV32 bootloader. See
section Customizing the Internal Bootloader on how to customize the bootloader
and its setting (for example the SPI chip-select port, the SPI clock speed or the flash
base address for storing the executable).

12.1. Programming an Executable
1. At first, reset the NEORV32 processor and wait until the bootloader start screen appears in your

terminal program.

2. Abort the auto boot sequence and start the user console by pressing any key.

3. Press u to upload the executable that you want to store to the external flash:

CMD:> u
Awaiting neorv32_exe.bin...

4. Send the binary in raw binary via your terminal program. When the upload is completed and
"OK" appears, press p to trigger the programming of the flash (do not execute the image via the e
command as this might corrupt the image):

CMD:> u
Awaiting neorv32_exe.bin... OK
CMD:> p
Write 0x000013FC bytes to SPI flash @ 0x00800000? (y/n)

5. The bootloader shows the size of the executable and the base address inside the SPI flash where
the executable is going to be stored. A prompt appears: Type y to start the programming or type
n to abort.

Section Customizing the Internal Bootloader show the according C-language define
that can be modified to specify the base address of the executable inside the SPI
flash.

The NEORV32 RISC-V Processor Visit on GitHub

29 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

CMD:> u
Awaiting neorv32_exe.bin... OK
CMD:> p
Write 0x000013FC bytes to SPI flash @ 0x08000000? (y/n) y
Flashing... OK
CMD:>

The bootloader stores the executable in little-endian byte-order to the flash.

6. If "OK" appears in the terminal line, the programming process was successful. Now you can use
the auto boot sequence to automatically boot your application from the flash at system start-up
without any user interaction.

The NEORV32 Processor Visit on GitHub

30 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 13. Packaging the Processor as IP
block for Xilinx Vivado Block Designer
1. Import all the core files from rtl/core (including default internal memory architectures from

rtl/core/mem) and assign them to a new design library neorv32.

2. Instantiate the rtl/system_integration/neorv32_top_axi4lite.vhd module.

3. Then either directly use that module in a new block-design ("Create Block Design", right-click →
"Add Module", thats easier for a first try) or package it ("Tools", "Create and Package new IP") for
the use in other projects.

4. Connect your AXI-peripheral directly to the core’s AXI4-Interface if you only have one, or to an
AXI-Interconnect (from the IP-catalog) if you have multiple peripherals.

5. Connect ALL the ACLK and ARESETN pins of all peripherals and interconnects to the processor’s
clock and reset signals to have a unified clock and reset domain (easier for a first setup).

6. Open the "Address Editor" tab and let Vivado assign the base-addresses for the AXI-peripherals
(you can modify them according to your needs).

7. For all FPGA-external signals (like UART signals) make all the connections you need "external"
(right-click on the signal/pin → "Make External").

8. Save everything, let VIVADO create a HDL-Wrapper for the block-design and choose this as your
Top Level Design.

9. Define your constraints and generate your bitstream.

True Random Number Generator

The NEORV32 TRNG peripheral is enabled by default in the neorv32_top_axi4lite
AXI wrapper. Otherwise, Vivado cannot insert the wrapper into a block design (see
https://github.com/stnolting/neorv32/issues/227.). [1] If the TRNG is not needed, you
can disable it by double-clicking on the module’s block and de-selecting "Io Trng
En" after inserting the module.

TWI Tri-State Drivers

Set the synthesis option "global" when generating the block design to maintain the
internal TWI tri-state drivers.

Guide provided by GitHub user AWenzel83 (see https://github.com/stnolting/
neorv32/discussions/52#discussioncomment-819013). ❤️

The NEORV32 RISC-V Processor Visit on GitHub

31 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32/issues/227
https://github.com/AWenzel83
https://github.com/stnolting/neorv32/discussions/52#discussioncomment-819013
https://github.com/stnolting/neorv32/discussions/52#discussioncomment-819013
https://github.com/stnolting/neorv32

[1] Seems like Vivado has problem evaluating design source files that have more than two in-file sub-entities.

The NEORV32 Processor Visit on GitHub

32 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Chapter 14. Simulating the Processor
The NEORV32 project includes a core CPU, built-in peripherals in the Processor Subsystem, and
additional peripherals in the templates and examples. Therefore, there is a wide range of possible
testing and verification strategies.

On the one hand, a simple smoke testbench allows ensuring that functionality is correct from a
software point of view. That is used for running the RISC-V architecture tests, in order to guarantee
compliance with the ISA specification(s).

On the other hand, VUnit and Verification Components are used for verifying the functionality of
the various peripherals from a hardware point of view.

The processor can check if it is being simulated by checking the SYSINFO
SYSINFO_SOC_IS_SIM flag (see https://stnolting.github.io/neorv32/#
_system_configuration_information_memory_sysinfo). Note that this flag is not
guaranteed to be set correctly (depending on the HDL toolchain’s pragma support).

14.1. Testbench
A plain-VHDL (no third-party libraries) testbench (sim/simple/neorv32_tb.simple.vhd) can be used
for simulating and testing the processor. This testbench features a 100MHz clock and enables all
optional peripheral and CPU extensions except for the E.

True Random Number Generator

The NEORV32 TRNG will be set to "simulation mode" when enabled for simulation
(replacing the ring-oscillators by pseudo-random LFSRs). See the neoTRNG
documentation for more information.

The simulation setup is configured via the "User Configuration" section located right at the
beginning of the testbench’s architecture. Each configuration constant provides comments to
explain the functionality.

Besides the actual NEORV32 Processor, the testbench also simulates "external" components that are
connected to the processor’s external bus/memory interface. These components are:

• an external instruction memory (that also allows booting from it)

• an external data memory

• an external memory to simulate "external IO devices"

• a memory-mapped registers to trigger the processor’s interrupt signals

The following table shows the base addresses of these four components and their default
configuration and properties:

The NEORV32 RISC-V Processor Visit on GitHub

33 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

http://vunit.github.io/
http://vunit.github.io/verification_components/user_guide.html
https://stnolting.github.io/neorv32/#_system_configuration_information_memory_sysinfo
https://stnolting.github.io/neorv32/#_system_configuration_information_memory_sysinfo
https://github.com/stnolting/neorv32

Attributes:

• r = read

• w = write

• e = execute

• 8 = byte-accessible

• 16 = half-word-accessible

• 32 = word-accessible

Table 3. Testbench: processor-external memories

Base address Size Attributes Description

0x00000000 imem_size_c r/w/e 8/16/32 external IMEM (initialized with application
image)

0x80000000 dmem_size_c r/w/e 8/16/32 external DMEM

0xf0000000 64 bytes r/w/e 8/16/32 external "IO" memory

0xff000000 4 bytes -/w/- -/-/32 memory-mapped register to trigger "machine
external", "machine software" and "SoC Fast
Interrupt" interrupts

The simulated NEORV32 does not use the bootloader and directly boots the current
application image (from the rtl/core/neorv32_application_image.vhd image file).

UART output during simulation

Data written to the NEORV32 UART0 / UART1 transmitter is send to a virtual UART
receiver implemented as part of the testbench. Received chars are send to the
simulator console and are also stored to a log file (neorv32.testbench_uart0.out for
UART0, neorv32.testbench_uart1.out for UART1) inside the simulation’s home
folder. Please note that printing via the native UART receiver takes a lot of
time. For faster simulation console output see section Faster Simulation Console
Output.

14.2. Faster Simulation Console Output
When printing data via the UART the communication speed will always be based on the configured
BAUD rate. For a simulation this might take some time. To have faster output you can enable the
simulation mode for UART0/UART1 (see section Documentation: Primary Universal Asynchronous
Receiver and Transmitter (UART0)).

ASCII data sent to UART0|UART1 will be immediately printed to the simulator console and logged to
files in the simulator execution directory:

The NEORV32 Processor Visit on GitHub

34 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/#_primary_universal_asynchronous_receiver_and_transmitter_uart0
https://stnolting.github.io/neorv32/#_primary_universal_asynchronous_receiver_and_transmitter_uart0
https://github.com/stnolting/neorv32

• neorv32.uart?.sim_mode.text.out: ASCII data.

• neorv32.uart?.sim_mode.data.out: all written 32-bit dumped as 8-char hexadecimal values.

You can "automatically" enable the simulation mode of UART0/UART1 when compiling an
application. In this case, the "real" UART0/UART1 transmitter unit is permanently disabled. To
enable the simulation mode just compile and install your application and add UART?_SIM_MODE to
the compiler’s USER_FLAGS variable (do not forget the -D suffix flag):

sw/example/blink_led$ make USER_FLAGS+=-DUART0_SIM_MODE clean_all all

The provided define will change the default UART0/UART1 setup function in order to set the
simulation mode flag in the according UART’s control register.

The UART simulation output (to file and to screen) outputs "complete lines" at
once. A line is completed with a line feed (newline, ASCII \n = 10).

14.3. Simulation using a shell script (with GHDL)
To simulate the processor using GHDL navigate to the sim/simple/ folder and run the provided shell
script. Any arguments that are provided while executing this script are passed to GHDL. For
example the simulation time can be set to 20ms using --stop-time=20ms as argument.

neorv32/sim/simple$ sh ghdl_sim.sh --stop-time=20ms

14.4. Simulation using Application Makefiles (In-
Console with GHDL)
To directly compile and run a program in the console (using the default testbench and GHDL as
simulator) you can use the sim makefile target. Make sure to use the UART simulation mode
(USER_FLAGS+=-DUART0_SIM_MODE and/or USER_FLAGS+=-DUART1_SIM_MODE) to get faster / direct-to-console
UART output.

sw/example/blink_led$ make USER_FLAGS+=-DUART0_SIM_MODE clean_all sim
[...]
Blinking LED demo program

14.4.1. Hello World!

To do a quick test of the NEORV32 make sure to have GHDL and a RISC-V gcc toolchain installed.
Navigate to the project’s sw/example/hello_world folder and run make USER_FLAGS+=-DUART0_SIM_MODE
MARCH=rv32imc clean_all sim:

The NEORV32 RISC-V Processor Visit on GitHub

35 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/ghdl/ghdl
https://github.com/stnolting/riscv-gcc-prebuilt
https://github.com/stnolting/neorv32

The simulator will output some sanity check notes (and warnings or even errors if
something is ill-configured) right at the beginning of the simulation to give a brief
overview of the actual NEORV32 SoC and CPU configurations.

stnolting@Einstein:/mnt/n/Projects/neorv32/sw/example/hello_world$ make USER_FLAGS+=-
DUART0_SIM_MODE MARCH=rv32imc clean_all sim
../../../sw/lib/source/neorv32_uart.c: In function 'neorv32_uart0_setup':
../../../sw/lib/source/neorv32_uart.c:301:4: warning: #warning UART0_SIM_MODE (primary
UART) enabled! Sending all UART0.TX data to text.io simulation output instead of real
UART0 transmitter. Use this for simulations only! [-Wcpp]
 301 | #warning UART0_SIM_MODE (primary UART) enabled! Sending all UART0.TX data to
text.io simulation output instead of real UART0 transmitter. Use this for simulations
only! ①
 | ^~~~~~~
Memory utilization:
 text data bss dec hex filename
 4612 0 120 4732 127c main.elf ②
Compiling ../../../sw/image_gen/image_gen
Installing application image to ../../../rtl/core/neorv32_application_image.vhd ③
Simulating neorv32_application_image.vhd...
Tip: Compile application with USER_FLAGS+=-DUART[0/1]_SIM_MODE to auto-enable
UART[0/1]'s simulation mode (redirect UART output to simulator console). ④
Using simulation runtime args: --stop-time=10ms ⑤
../rtl/core/neorv32_top.vhd:347:3:@0ms:(assertion note): NEORV32 PROCESSOR IO
Configuration: GPIO MTIME UART0 UART1 SPI TWI PWM WDT CFS SLINK NEOLED XIRQ ⑥
../rtl/core/neorv32_top.vhd:370:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: Boot configuration: Direct boot from memory (processor-internal IMEM).
../rtl/core/neorv32_top.vhd:394:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: Implementing on-chip debugger (OCD).
../rtl/core/neorv32_cpu.vhd:169:3:@0ms:(assertion note): NEORV32 CPU ISA Configuration
(MARCH): RV32IMCU_Zbb_Zicsr_Zifencei_Zfinx_Debug
../rtl/core/neorv32_cpu.vhd:189:3:@0ms:(assertion note): NEORV32 CPU CONFIG NOTE:
Implementing NO dedicated hardware reset for uncritical registers (default, might
reduce area). Set package constant <dedicated_reset_c> = TRUE to configure a DEFINED
reset value for all CPU registers.
../rtl/core/neorv32_imem.vhd:107:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: Implementing processor-internal IMEM as ROM (16384 bytes), pre-initialized with
application (4612 bytes).
../rtl/core/neorv32_dmem.vhd:89:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: Implementing processor-internal DMEM (RAM, 8192 bytes).
../rtl/core/neorv32_wishbone.vhd:136:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: External Bus Interface - Implementing STANDARD Wishbone protocol.
../rtl/core/neorv32_wishbone.vhd:140:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: External Bus Interface - Implementing auto-timeout (255 cycles).
../rtl/core/neorv32_wishbone.vhd:144:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: External Bus Interface - Implementing LITTLE-endian byte order.
../rtl/core/neorv32_wishbone.vhd:148:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: External Bus Interface - Implementing registered RX path.

The NEORV32 Processor Visit on GitHub

36 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

../rtl/core/neorv32_slink.vhd:161:3:@0ms:(assertion note): NEORV32 PROCESSOR CONFIG
NOTE: Implementing 8 RX and 8 TX stream links.
⑦

##

##
 ## ## ######### ######## ######## ## ## ######## ########
################
##
####
##
##
##
####
##
##
##
####
##########
################

##

##
Hello world! :)

① Notifier that "simulation mode" of UART0 is enabled (by the USER_FLAGS+=-DUART0_SIM_MODE
makefile flag). All UART0 output is send to the simulator console.

② Final executable size (text) and static data memory requirements (data, bss).

③ The application code is installed as pre-initialized IMEM. This is the default approach for
simulation.

④ A note regarding UART "simulation mode", but we have already enabled that.

⑤ List of (default) arguments that were send to the simulator. Here: maximum simulation time
(10ms).

⑥ "Sanity checks" from the core’s VHDL files. These reports give some brief information about the
SoC/CPU configuration (→ generics). If there are problems with the current configuration, an
ERROR will appear.

⑦ Execution of the actual program starts.

14.5. Advanced Simulation using VUnit
VUnit is an open source unit testing framework for VHDL/SystemVerilog. It allows continuous and
automated testing of HDL code by complementing traditional testing methodologies. The motto of
VUnit is "testing early and often" through automation.

The NEORV32 RISC-V Processor Visit on GitHub

37 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://vunit.github.io/
https://github.com/stnolting/neorv32

VUnit is composed by a Python interface and multiple optional VHDL libraries. The Python
interface allows declaring sources and simulation options, and it handles the compilation,
execution and gathering of the results regardless of the simulator used. That allows having a single
run.py script to be used with GHDL, ModelSim/QuestaSim, Riviera PRO, etc. On the other hand, the
VUnit’s VHDL libraries provide utilities for assertions, logging, having virtual queues, handling CSV
files, etc. The Verification Component Library uses those features for abstracting away bit-toggling
when verifying standard interfaces such as Wishbone, AXI, Avalon, UARTs, etc.

Testbench sources in sim (such as sim/neorv32_tb.vhd and sim/uart_rx*.vhd) use VUnit’s VHDL
libraries for testing NEORV32 and peripherals. The entry-point for executing the tests is sim/run.py.

./sim/run.py -l
neorv32.neorv32_tb.all
Listed 1 tests

./sim/run.py -v
Compiling into neorv32: rtl/core/neorv32_uart.vhd
passed
Compiling into neorv32: rtl/core/neorv32_twi.vhd
passed
Compiling into neorv32: rtl/core/neorv32_trng.vhd
passed
...

See VUnit: User Guide and VUnit: Command Line Interface for further info about VUnit’s features.

The NEORV32 Processor Visit on GitHub

38 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

http://vunit.github.io/py/ui.html
http://vunit.github.io/vhdl_libraries.html
http://vunit.github.io/verification_components/user_guide.html
http://vunit.github.io/user_guide.html
http://vunit.github.io/cli.html
https://github.com/stnolting/neorv32

Chapter 15. Building the Documentation
The documentation (datasheet + user guide) is written using asciidoc. The according source files
can be found in docs/…. The documentation of the software framework is written in-code using
doxygen.

A makefiles in the project’s docs directory is provided to build all of the documentation as HTML
pages or as PDF documents.

Pre-rendered PDFs are available online as nightly pre-releases: https://github.com/
stnolting/neorv32/releases. The HTML-based documentation is also available
online at the project’s GitHub Pages.

The makefile provides a help target to show all available build options and their according outputs.

neorv32/docs$ make help

Listing 10. Example: Generate HTML documentation (data sheet) using asciidoctor

neorv32/docs$ make html

If you don’t have asciidoctor / asciidoctor-pdf installed, you can still generate all
the documentation using a docker container via make container.

The NEORV32 RISC-V Processor Visit on GitHub

39 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32/releases
https://github.com/stnolting/neorv32/releases
https://stnolting.github.io/neorv32/
https://github.com/stnolting/neorv32

Chapter 16. Zephyr RTOS Support ᾨ�
The NEORV32 processor is supported by upstream Zephyr RTOS: https://docs.zephyrproject.org/
latest/boards/riscv/neorv32/doc/index.html

The absolute path to the NEORV32 executable image generator binary (…
/neorv32/sw/image_gen) has to be added to the PATH variable so the Zephyr build
system can generate executables and memory-initialization images.

Zephyr OS port provided by GitHub user henrikbrixandersen (see
https://github.com/stnolting/neorv32/discussions/172). ❤️

The NEORV32 Processor Visit on GitHub

40 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://docs.zephyrproject.org/latest/boards/riscv/neorv32/doc/index.html
https://docs.zephyrproject.org/latest/boards/riscv/neorv32/doc/index.html
https://github.com/henrikbrixandersen
https://github.com/stnolting/neorv32/discussions/172
https://github.com/stnolting/neorv32

Chapter 17. FreeRTOS Support
A NEORV32-specific port and a simple demo for FreeRTOS (https://github.com/FreeRTOS/FreeRTOS)
are available in the sw/example/demo_freeRTOS folder. See the according documentation
(sw/example/demo_freeRTOS/README.md) for more information.

The NEORV32 RISC-V Processor Visit on GitHub

41 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/FreeRTOS/FreeRTOS
https://github.com/stnolting/neorv32

Chapter 18. Debugging using the On-Chip
Debugger
The NEORV32 on-chip debugger allows online in-system debugging via an external JTAG access port
from a host machine. The general flow is independent of the host machine’s operating system.
However, this tutorial uses Windows and Linux (Ubuntu on Windows / WSL) in parallel running
the upstream version of OpenOCD and the RISC-V GNU debugger gdb.

See datasheet section On Chip Debugger (OCD) for more information regarding the
actual hardware.

The on-chip debugger is only implemented if the ON_CHIP_DEBUGGER_EN generic
is set true. Furthermore, it requires the Zicsr and Zifencei CPU extension to be
implemented (top generics CPU_EXTENSION_RISCV_Zicsr = true and
CPU_EXTENSION_RISCV_Zifencei = true).

18.1. Hardware Requirements
Make sure the on-chip debugger of your NEORV32 setup is implemented (ON_CHIP_DEBUGGER_EN
generic = true). This tutorial uses gdb to directly upload an executable to the processor. If you are
using the default processor setup with internal instruction memory (IMEM) make sure it is
implemented as RAM (INT_BOOTLOADER_EN generic = true).

Connect a JTAG adapter to the NEORV32 jtag_* interface signals. If you do not have a full-scale JTAG
adapter, you can also use a FTDI-based adapter like the "FT2232H-56Q Mini Module", which is a
simple and inexpensive FTDI breakout board.

Table 4. JTAG pin mapping

NEORV32 top signal JTAG signal FTDI port

jtag_tck_i TCK D0

jtag_tdi_i TDI D1

jtag_tdo_o TDO D2

jtag_tms_i TMS D3

jtag_trst_i TRST D4

The low-active JTAG tap reset jtag_trst_i signals is optional as a reset can also be
triggered via the TAP controller issuing special commands. If jtag_trst_i is not
connected make sure to pull the signal high.

The NEORV32 Processor Visit on GitHub

42 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://stnolting.github.io/neorv32/#_on_chip_debugger_ocd
https://github.com/stnolting/neorv32

18.2. OpenOCD
The NEORV32 on-chip debugger can be accessed using the upstream version of OpenOCD. A pre-
configured OpenOCD configuration file is provided (sw/openocd/openocd_neorv32.cfg) that allows an
easy access to the NEORV32 CPU.

You might need to adapt ftdi vid_pid, ftdi channel and ftdi layout_init in
sw/openocd/openocd_neorv32.cfg according to your interface chip and your
operating system.

If you want to modify the JTAG clock speed (via adapter speed in
sw/openocd/openocd_neorv32.cfg) make sure to meet the clock requirements noted
in Documentation: Debug Transport Module (DTM).

To access the processor using OpenOCD, open a terminal and start OpenOCD with the pre-
configured configuration file.

Listing 11. Connecting via OpenOCD (on Windows) using the default openocd_neorv32.cfg script

N:\Projects\neorv32\sw\openocd>openocd -f openocd_neorv32.cfg
Open On-Chip Debugger 0.11.0 (2021-11-18) [https://github.com/sysprogs/openocd]
Licensed under GNU GPL v2
libusb1 09e75e98b4d9ea7909e8837b7a3f00dda4589dc3
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : clock speed 1000 kHz
Info : JTAG tap: neorv32.cpu tap/device found: 0x0cafe001 (mfg: 0x000 (<invalid>),
part: 0xcafe, ver: 0x0)
Info : datacount=1 progbufsize=2
Info : Disabling abstract command reads from CSRs.
Info : Examined RISC-V core; found 1 harts
Info : hart 0: XLEN=32, misa=0x40901107
Info : starting gdb server for neorv32.cpu.0 on 3333
Info : Listening on port 3333 for gdb connections
Target HALTED.
Ready for remote connections.
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections

OpenOCD has successfully connected to the NEORV32 on-chip debugger and has examined the CPU
(showing the content of the misa CSRs). The processor is halted and OpenOCD waits fot gdb to
connect via port 3333.

18.3. Debugging with GDB
This guide uses the simple "blink example" from sw/example/blink_led as simplified test application

The NEORV32 RISC-V Processor Visit on GitHub

43 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://stnolting.github.io/neorv32/#_debug_module_dm
https://github.com/stnolting/neorv32

to show the basics of in-system debugging.

At first, the application needs to be compiled. We will use the minimal machine architecture
configuration (rv32i) here to be independent of the actual processor/CPU configuration. Navigate to
sw/example/blink_led and compile the application:

Listing 12. Compile the test application

.../neorv32/sw/example/blink_led$ make MARCH=rv32i USER_FLAGS+=-g clean_all all

Adding debug symbols to the executable

USER_FLAGS+=-g passes the -g flag to the compiler so it adds debug
information/symbols to the generated ELF file. This is optional but will provide
more sophisticated debugging information (like source file line numbers).

This will generate an ELF file main.elf that contains all the symbols required for debugging.
Furthermore, an assembly listing file main.asm is generated that we will use to define breakpoints.

Open another terminal in sw/example/blink_led and start gdb. The GNU debugger is part of the
toolchain (see Software Toolchain Setup).

Listing 13. Starting GDB (on Linux (Ubuntu on Windows))

.../neorv32/sw/example/blink_led$ riscv32-unknown-elf-gdb
GNU gdb (GDB) 10.1
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-pc-linux-gnu --target=riscv32-unknown-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

Now connect to OpenOCD using the default port 3333 on your machine. We will use the previously
generated ELF file main.elf from the blink_led example. Finally, upload the program to the
processor and start debugging.

The NEORV32 Processor Visit on GitHub

44 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

The executable that is uploaded to the processor is not the default NEORV32
executable (neorv32_exe.bin) that is used for uploading via the bootloader. Instead,
all the required sections (like .text) are extracted from mail.elf by GDB and
uploaded via the debugger’s indirect memory access.

Listing 14. Running GDB

(gdb) target extended-remote localhost:3333 ①
Remote debugging using localhost:3333
warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
0xffff0c94 in ?? () ②
(gdb) file main.elf ③
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from main.elf...
(gdb) load ④
Loading section .text, size 0xd0c lma 0x0
Loading section .rodata, size 0x39c lma 0xd0c
Start address 0x00000000, load size 4264
Transfer rate: 43 KB/sec, 2132 bytes/write.
(gdb)

① Connect to OpenOCD

② The CPU was still executing code from the bootloader ROM - but that does not matter here

③ Select mail.elf from the blink_led example

④ Upload the executable

After the upload, GDB will make the processor jump to the beginning of the uploaded executable
(by default, this is the beginning of the instruction memory at 0x00000000) skipping the bootloader
and halting the CPU right before executing the blink_led application.

After gdb has connected to the CPU, it is recommended to disable the CPU’s global
interrupt flag (mstatus.mie, = bit #3) to prevent unintended calls of potentially
outdated trap handlers. The global interrupt flag can be cleared using the
following gdb command: set $mstatus = ($mstatus & ~(1<<3)). Interrupts can be
enabled globally again by the following command: set $mstatus = ($mstatus |
(1<<3)).

18.3.1. Software Breakpoints

The following steps are just a small showcase that illustrate a simple debugging scheme.

While compiling blink_led, an assembly listing file main.asm was generated. Open this file with a
text editor to check out what the CPU is going to do when resumed.

The NEORV32 RISC-V Processor Visit on GitHub

45 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://github.com/stnolting/neorv32

The blink_led example implements a simple counter on the 8 lowest GPIO output ports. The
program uses "busy wait" to have a visible delay between increments. This waiting is done by
calling the neorv32_cpu_delay_ms function. We will add a breakpoint right at the end of this wait
function so we can step through the iterations of the counter.

Listing 15. Cut-out from main.asm generated from the blink_led example

00000688 <__neorv32_cpu_delay_ms_end>:
 688: 01c12083 lw ra,28(sp)
 68c: 02010113 addi sp,sp,32
 690: 00008067 ret

The very last instruction of the neorv32_cpu_delay_ms function is ret (= return) at hexadecimal 690 in
this example. Add this address as breakpoint to GDB.

The address might be different if you use a different version of the software
framework or if different ISA options are configured.

Listing 16. Adding a GDB software breakpoint

(gdb) b * 0x690 ①
Breakpoint 1 at 0x690

① b is an alias for break, which adds a software breakpoint.

How do software breakpoints work?

Software breakpoints are used for debugging programs that are accessed from
read/write memory (RAM) like IMEM. The debugger temporarily replaces the
instruction word of the instruction, where the breakpoint shall be inserted, by a
ebreak / c.ebreak instruction. Whenever execution reaches this instruction, debug
mode is entered and the debugger restores the original instruction at this address
to maintain original program behavior.

When debugging programs executed from ROM hardware-assisted breakpoints
using the core’s trigger module have to be used. See section Hardware Breakpoints
for more information.

Now execute c (= continue). The CPU will resume operation until it hits the break-point. By this we
can move from one counter increment to another.

The NEORV32 Processor Visit on GitHub

46 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32

Listing 17. Iterating from breakpoint to breakpoint

Breakpoint 1 at 0x690
(gdb) c
Continuing.

Breakpoint 1, 0x00000690 in neorv32_cpu_delay_ms ()
(gdb) c
Continuing.

Breakpoint 1, 0x00000690 in neorv32_cpu_delay_ms ()
(gdb) c
Continuing.

Hardcoded EBREAK Instructions In The Program Code

If your original application code uses the BREAK instruction (for example for some
OS calls/signaling) this instruction will cause an enter to debug mode when
executed. These situation cannot be continued using gdb’s c nor can they be
"stepped-over" using the single-step command s. You need to declare the ebreak
instruction as breakpoint to be able to resume operation after executing it. See
https://sourceware.org/pipermail/gdb/2021-January/049125.html

18.3.2. Hardware Breakpoints

Hardware-assisted breakpoints using the CPU’s trigger module are required when debugging code
that is executed from read-only memory (ROM) as GDB cannot temporarily replace instructions by
BREAK instructions.

From a user point of view hardware breakpoints behave like software breakpoints. GDB provides a
command to setup a hardware-assisted breakpoint:

Listing 18. Adding a GDB hardware breakpoint

(gdb) hb * 0x690 ①
Breakpoint 1 at 0x690

① hb is an alias for hbreak, which adds a hardware breakpoint.

The CPU’s trigger module only provides a single instruction address match type
trigger. Hence, only a single hb hardware-assisted breakpoint can be used.

The NEORV32 RISC-V Processor Visit on GitHub

47 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://sourceware.org/pipermail/gdb/2021-January/049125.html
https://github.com/stnolting/neorv32

Chapter 19. Legal

License
BSD 3-Clause License

Copyright (c) 2022, Stephan Nolting. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

The NEORV32 RISC-V Processor
HQ: https://github.com/stnolting/neorv32
By Dipl.-Ing. Stephan Nolting
European Union, Germany
Contact: stnolting@gmail.com

The NEORV32 Processor Visit on GitHub

48 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32
mailto:stnolting@gmail.com
https://github.com/stnolting/neorv32

Proprietary Notice
• "GitHub" is a Subsidiary of Microsoft Corporation.

• "Vivado" and "Artix" are trademarks of Xilinx Inc.

• "AXI", "AXI4-Lite" and "AXI4-Stream" are trademarks of Arm Holdings plc.

• "ModelSim" is a trademark of Mentor Graphics – A Siemens Business.

• "Quartus Prime" and "Cyclone" are trademarks of Intel Corporation.

• "iCE40", "UltraPlus" and "Radiant" are trademarks of Lattice Semiconductor Corporation.

• "Windows" is a trademark of Microsoft Corporation.

• "Tera Term" copyright by T. Teranishi.

• "NeoPixel" is a trademark of Adafruit Industries.

• Images/figures made with Microsoft Power Point.

• Timing diagrams made with WaveDrom Editor.

• Documentation proudly made with asciidoctor.

• All further/unreferenced products belong to their according copyright holders.

PDF icons from https://www.flaticon.com and made by Freepik, Good Ware, Pixel perfect, Vectors
Market

Disclaimer
This project is released under the BSD 3-Clause license. No copyright infringement intended. Other
implied or used projects might have different licensing – see their documentation to get more
information.

Limitation of Liability for External Links
This document contains links to the websites of third parties ("external links"). As the content of
these websites is not under our control, we cannot assume any liability for such external content.
In all cases, the provider of information of the linked websites is liable for the content and accuracy
of the information provided. At the point in time when the links were placed, no infringements of
the law were recognizable to us. As soon as an infringement of the law becomes known to us, we
will immediately remove the link in question.

Citing

This is an open-source project that is free of charge. Use this project in any way
you like (as long as it complies to the permissive license). Please cite it
appropriately. ὄ�

The NEORV32 RISC-V Processor Visit on GitHub

49 / 50 Copyright (c) 2021, Stephan Nolting. All rights reserved. 2022-06-01

https://www.flaticon.com
https://www.freepik.com
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/authors/pixel-perfect
https://www.flaticon.com/authors/vectors-market
https://www.flaticon.com/authors/vectors-market
https://github.com/stnolting/neorv32

Contributors ❤️

Please add as many contributors as possible to the author field.
This project would not be where it is without them.

If you are using the NEORV32 or parts of the project in some kind of publication, please cite it as
follows:

Listing 19. BibTeX

@misc{nolting22,
 author = {Nolting, S. and ...},
 title = {The NEORV32 RISC-V Processor},
 year = {2022},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/stnolting/neorv32}}
}

DOI

This project also provides a digital object identifier provided by zenodo:
[zenodo.5018888]

Acknowledgments
A big shout-out to the community and all contributors, who helped improving this project! ❤️

RISC-V - instruction sets want to be free!

Continuous integration provided by GitHub Actions and powered by GHDL.

The NEORV32 Processor Visit on GitHub

50 / 50 NEORV32 Version: v1.7.1-r133-g89629488 2022-06-01

https://github.com/stnolting/neorv32/graphs/contributors
https://zenodo.org
https://doi.org/10.5281/zenodo.5018888
https://github.com/stnolting/neorv32/graphs/contributors
https://riscv.org
https://github.com/features/actions
https://github.com/ghdl/ghdl
https://github.com/stnolting/neorv32

	The NEORV32 RISC-V Processor: User Guide
	Table of Contents
	Chapter 1. Software Toolchain Setup
	1.1. Building the Toolchain from Scratch
	1.2. Downloading and Installing a Prebuilt Toolchain
	1.2.1. Use The Toolchain I have Build
	1.2.2. Use a Third Party Toolchain

	1.3. Installation
	1.4. Testing the Installation

	Chapter 2. General Hardware Setup
	Chapter 3. General Software Framework Setup
	Chapter 4. Application Program Compilation
	Chapter 5. Uploading and Starting of a Binary Executable Image via UART
	Chapter 6. Installing an Executable Directly Into Memory
	Chapter 7. Setup of a New Application Program Project
	Chapter 8. Enabling RISC-V CPU Extensions
	Chapter 9. Application-Specific Processor Configuration
	9.1. Optimize for Performance
	9.2. Optimize for Size
	9.3. Optimize for Clock Speed
	9.4. Optimize for Energy

	Chapter 10. Adding Custom Hardware Modules
	10.1. Standard (External) Interfaces
	10.2. External Bus Interface
	10.3. Stream Link Interface
	10.4. Custom Functions Subsystem
	10.5. Custom Functions Unit
	10.6. Comparative Summary

	Chapter 11. Customizing the Internal Bootloader
	11.1. Bootloader Boot Configuration
	Default Boot Configuration
	AUTO_BOOT_SPI_EN
	AUTO_BOOT_OCD_EN

	Chapter 12. Programming an External SPI Flash via the Bootloader
	12.1. Programming an Executable

	Chapter 13. Packaging the Processor as IP block for Xilinx Vivado Block Designer
	Chapter 14. Simulating the Processor
	14.1. Testbench
	14.2. Faster Simulation Console Output
	14.3. Simulation using a shell script (with GHDL)
	14.4. Simulation using Application Makefiles (In-Console with GHDL)
	14.4.1. Hello World!

	14.5. Advanced Simulation using VUnit

	Chapter 15. Building the Documentation
	Chapter 16. Zephyr RTOS Support 🪁
	Chapter 17. FreeRTOS Support
	Chapter 18. Debugging using the On-Chip Debugger
	18.1. Hardware Requirements
	18.2. OpenOCD
	18.3. Debugging with GDB
	18.3.1. Software Breakpoints
	18.3.2. Hardware Breakpoints

	Chapter 19. Legal
	License
	Proprietary Notice
	Disclaimer
	Limitation of Liability for External Links
	Citing
	Acknowledgments

