

pom/sap/mei – v2.1 DMA - 1/7

DIRECT MEMORY ACCESS

 DIRECT MEMORY ACCESS (DMA)

1 INTRODUCTION
This laboratory aims to demonstrate the performance of Direct Memory Access (DMA). In
this practical workshop, you will use a graphic display connected by SPI. This SPI display
will be controlled with and without DMA. You will be able to analyze the difference in
performance.

A DMA transfer allows data exchanges between the main memory and a peripheral (RAM
to peripheral) without needing a processor except to initiate and conclude the transfer.
The DMA controller takes care of all memory transfers.

The processor initiates the data transfers by setting up the DMA controller. From then on,
the DMA controller takes care of the transfers alone, using a specific bus to perform the
data transfers. This means the processor can perform other tasks in parallel.

The figures below show the block diagram of the DMA controller integrated into the
STM32F746 processor. This processor offers two separate DMA channels.

pom/sap/mei - v2.1 DMA - 2/7

DIRECT MEMORY ACCESS

DMA schematic

Since the DMA offers many possibilities, it can be quite complex to configure it correctly.
To simplify this operation, we will use free software from STMicroelectronics called
STM32CubeMX. This software will generate the initialization code automatically.

pom/sap/mei - v2.1 DMA - 3/7

DIRECT MEMORY ACCESS

2 SPI AND DMA INITIALISATION

2.1 STM32CubeMX
ST offers a tool to configure an STM32 processor with ease. This graphical interface
software allows you to generate a part of the code or a full project automatically. This
software helps you generate your application code and initialize all the peripherals.

Start by launching STM32CubeMX (not STM32CubeIDE).

In the “Updater Settings <alt-s>”, check the path where the repository is saved. If this is in
the administrator profile, change it where you want (c:\devel\ is a good choice).

Finally, start a new project from the MCU selector.

2.2 STM32CubeMX views
STM32CubeMX offers 3 main views to configure the microcontroller operation.

2.2.1 « Pinout » view

The "pinout" view lets you choose which processor
pin is connected to which signal.

For example, we can see in the figure on the right
shows that the PB8 pin is configured as an output and
is named "RST_NOKIA".

pom/sap/mei - v2.1 DMA - 4/7

DIRECT MEMORY ACCESS

The table below describes the display signals connected to the microcontroller pins:

26 pin
connector Signal description Signal name /

User label CPU Pin

2 SPI master out MOSI PB15 / MOSI SPI2
3 SPI clock SCLK PI1 / SCLK SPI2
4 Chip select CS_NOKIA PF6 (Output)
6 Reset RST_NOKIA PB8 (Output)
8 Data/Command D_C_NOKIA PB9 (Output)

The "pinout" view is also used to select the peripherals. Using CubeMX, you can configure
the SPI2 module as follows:

Once the module is activated, you can choose the pins on which the module is used.

2.2.2 « Clock configuration » view

The "Clock configuration" view lets you choose the frequency at which the microcontroller
will operate. For this laboratory, two frequencies will be useful. The processor frequency
(HCLK) and the APB1peripheral frequency for the peripheral clocks (the SPI2 peripheral
in our case).

pom/sap/mei - v2.1 DMA - 5/7

DIRECT MEMORY ACCESS

2.2.3 « Configuration » view

The "Configuration" view allows you to configure the settings for each device or
peripheral.

According to the display datasheet, the SPI module has to be configured as follows:

Max. SPI speed: 4MHz CS active low

8 data bits, MSB first Reset active low

CPOL = 0, CPHA = first edge D_C : 0 = control
D_C : 1 = data

In the same way, you can set the control signals of the LCD screen.

2.2.4 Project and code generation

Finally, you can generate a full project when all pins and peripherals are configured.
Select a project location folder and choose MDK-ARM V5 as a toolchain. This will
generate a Keil uVision project.

A uVision projet will be generated. Please use the ARM MDK version 5 and select the
STM32Cube FW for CortexM7 version 1.16.2. Do not use the latest available version. The
package is installed and available under the “C:\devel\” folder. Or it can be downloaded
manually from https://github.com/STMicroelectronics/STM32CubeF7/tags.

https://github.com/STMicroelectronics/STM32CubeF7/tags

pom/sap/mei - v2.1 DMA - 6/7

DIRECT MEMORY ACCESS

In the code generator menu, choose “Generate peripheral initialization as a pair of files”.

Once the code is generated, open the generated project in uVision. Please look at the
generated code and use it in your application.
Add the given files nokia.c/.h and lines_functions.c to your project.

3 PRACTICAL WORK #1
In this first task, we will use the SPI display without DMA.

The Nokia module is an LCD screen for which the nokia.c file offers useful functions for
displaying graphics. The Nokia LCD is accessed through the SPI2 (Serial Peripheral
Interface) bus. There are two distinct modes to send bytes to the LCD. The choice is
made with the D/C pin (0 = control, 1 = data):

• The control mode allows you to give commands to the screen. During the
initialization (Nokia_Init()), commands will be sent to the screen.

• The data mode allows you to send the bytes of the image (video buffer) to the
screen.

Complete the code for the following functions in the nokia.c file:

void NokiaControl(uint8_t controlByte);

void NokiaData(uint8_t dataByte);

Update your main program to call the Nokia_Init() function to initialize the LCD
screen. Use the Nokia_Update() function to transmit the video buffer to the screen.

pom/sap/mei - v2.1 DMA - 7/7

DIRECT MEMORY ACCESS

Using the HAL_GetTick() function and the Debug (printf) Viewer, measure and display
the number of frames per second (FPS) displayed on the screen.

Please do the same speed tests with and without the cache enabled.

 SCB_EnableICache(); // Enable Instruction cache

 SCB_EnableDCache(); // Enable Data cache

4 PRACTICAL WORK #2
We will now do the same task with DMA activated.

Using STM32CubeMX, generate a new code/project with the DMA enabled. The
HAL_SPI_Transmit_DMA function should be used to start a DMA transfer. Before
starting a new transfer, ensure the previous one is finished using the
HAL_DMA_GetState function.

Compare the differences in terms of performances obtained with and without
DMA.Becnhmark your code using the table below and answer the following questions:

1. How could the display speed be further increased?

2. What is the theoretical maximum number of frames per second that can be
displayed on the LCD monitor?

3. What must be done to reach this speed? What will be the consequences? Make
measurements.

Benchmark configuration Measured speed [FPS]

Without DMA, without cache

