This repository has been archived on 2024-01-25. You can view files and clone it, but cannot push or open issues or pull requests.
SummerSchool2-Controller/306-controller_interface.X/mcc_generated_files/memory.c

206 lines
5.7 KiB
C
Raw Normal View History

2023-08-22 07:22:00 +00:00
/**
MEMORY Generated Driver File
@Company
Microchip Technology Inc.
@File Name
memory.c
@Summary
This is the generated driver implementation file for the MEMORY driver using PIC10 / PIC12 / PIC16 / PIC18 MCUs
@Description
This file provides implementations of driver APIs for MEMORY.
Generation Information :
Product Revision : PIC10 / PIC12 / PIC16 / PIC18 MCUs - 1.81.8
2023-08-28 15:36:18 +00:00
Device : PIC18F26K83
2023-08-22 07:22:00 +00:00
Driver Version : 2.1.3
The generated drivers are tested against the following:
Compiler : XC8 2.36 and above
MPLAB : MPLAB X 6.00
*/
/*
(c) 2018 Microchip Technology Inc. and its subsidiaries.
Subject to your compliance with these terms, you may use Microchip software and any
derivatives exclusively with Microchip products. It is your responsibility to comply with third party
license terms applicable to your use of third party software (including open source software) that
may accompany Microchip software.
THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP
HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO
THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL
CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT
OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS
SOFTWARE.
*/
/**
Section: Included Files
*/
#include <xc.h>
#include "memory.h"
/**
Section: Flash Module APIs
*/
uint8_t FLASH_ReadByte(uint32_t flashAddr)
{
NVMCON1bits.NVMREG = 2;
TBLPTRU = (uint8_t)((flashAddr & 0x00FF0000) >> 16);
TBLPTRH = (uint8_t)((flashAddr & 0x0000FF00)>> 8);
TBLPTRL = (uint8_t)(flashAddr & 0x000000FF);
asm("TBLRD");
return (TABLAT);
}
uint16_t FLASH_ReadWord(uint32_t flashAddr)
{
return ((((uint16_t)FLASH_ReadByte(flashAddr+1))<<8)|(FLASH_ReadByte(flashAddr)));
}
void FLASH_WriteByte(uint32_t flashAddr, uint8_t *flashRdBufPtr, uint8_t byte)
{
uint32_t blockStartAddr = (uint32_t)(flashAddr & ((END_FLASH-1) ^ (ERASE_FLASH_BLOCKSIZE-1)));
uint8_t offset = (uint8_t)(flashAddr & (ERASE_FLASH_BLOCKSIZE-1));
uint8_t i;
// Entire row will be erased, read and save the existing data
for (i=0; i<ERASE_FLASH_BLOCKSIZE; i++)
{
flashRdBufPtr[i] = FLASH_ReadByte((blockStartAddr+i));
}
// Load byte at offset
flashRdBufPtr[offset] = byte;
// Writes buffer contents to current block
FLASH_WriteBlock(blockStartAddr, flashRdBufPtr);
}
int8_t FLASH_WriteBlock(uint32_t writeAddr, uint8_t *flashWrBufPtr)
{
uint32_t blockStartAddr = (uint32_t )(writeAddr & ((END_FLASH-1) ^ (ERASE_FLASH_BLOCKSIZE-1)));
uint8_t GIEBitValue = INTCON0bits.GIE; // Save interrupt enable
uint8_t i;
// Flash write must start at the beginning of a row
if( writeAddr != blockStartAddr )
{
return -1;
}
// Block erase sequence
FLASH_EraseBlock(writeAddr);
// Block write sequence
TBLPTRU = (uint8_t)((writeAddr & 0x00FF0000) >> 16); // Load Table point register
TBLPTRH = (uint8_t)((writeAddr & 0x0000FF00)>> 8);
TBLPTRL = (uint8_t)(writeAddr & 0x000000FF);
// Write block of data
for (i=0; i<WRITE_FLASH_BLOCKSIZE; i++)
{
TABLAT = flashWrBufPtr[i]; // Load data byte
if (i == (WRITE_FLASH_BLOCKSIZE-1))
{
asm("TBLWT");
}
else
{
asm("TBLWTPOSTINC");
}
}
NVMCON1bits.NVMREG = 2;
NVMCON1bits.WREN = 1;
INTCON0bits.GIE = 0; // Disable interrupts
NVMCON2 = 0x55;
NVMCON2 = 0xAA;
NVMCON1bits.WR = 1; // Start program
INTCON0bits.GIE = GIEBitValue; // Restore interrupt enable
NVMCON1bits.WREN = 0; // Disable writes to memory
return 0;
}
void FLASH_EraseBlock(uint32_t baseAddr)
{
uint8_t GIEBitValue = INTCON0bits.GIE; // Save interrupt enable
TBLPTRU = (uint8_t)((baseAddr & 0x00FF0000) >> 16);
TBLPTRH = (uint8_t)((baseAddr & 0x0000FF00)>> 8);
TBLPTRL = (uint8_t)(baseAddr & 0x000000FF);
NVMCON1bits.NVMREG = 2;
NVMCON1bits.WREN = 1;
NVMCON1bits.FREE = 1;
INTCON0bits.GIE = 0; // Disable interrupts
NVMCON2 = 0x55;
NVMCON2 = 0xAA;
NVMCON1bits.WR = 1; // Start program
INTCON0bits.GIE = GIEBitValue; // Restore interrupt enable
NVMCON1bits.WREN = 0; // Disable writes to memory
}
/**
Section: Data EEPROM Module APIs
*/
void DATAEE_WriteByte(uint16_t bAdd, uint8_t bData)
{
uint8_t GIEBitValue = INTCON0bits.GIE;
NVMADRH = (uint8_t)((bAdd >> 8) & 0x03);
NVMADRL = (uint8_t)(bAdd & 0xFF);
NVMDAT = bData;
NVMCON1bits.NVMREG = 0;
NVMCON1bits.WREN = 1;
INTCON0bits.GIE = 0; // Disable interrupts
NVMCON2 = 0x55;
NVMCON2 = 0xAA;
NVMCON1bits.WR = 1;
// Wait for write to complete
while (NVMCON1bits.WR)
{
}
NVMCON1bits.WREN = 0;
INTCON0bits.GIE = GIEBitValue; // restore interrupt enable
}
uint8_t DATAEE_ReadByte(uint16_t bAdd)
{
NVMADRH = (uint8_t)((bAdd >> 8) & 0x03);
NVMADRL = (uint8_t)(bAdd & 0xFF);
NVMCON1bits.NVMREG = 0;
NVMCON1bits.RD = 1;
NOP(); // NOPs may be required for latency at high frequencies
NOP();
return (NVMDAT);
}
void MEMORY_Tasks( void )
{
/* TODO : Add interrupt handling code */
PIR0bits.NVMIF = 0;
}
/**
End of File
*/