

A Software Engineering Semester Project with an Embedded System

Medard Rieder

Thomas Sterren

School of Engineering - Infotronics, Inf2 / SS 2023

Introduction

This document is the task setting for your semester project in Informatics II. The task combines the application of the knowledge you have gained in the Informatics II course:

- Imperative programming using C / C++
- Object- oriented programming using C / C++
- Software modelling using UML
- Software patterns for embedded systems
- Stateful programming using C / C++
- Execution framework

The task will also bring some new knowledge which is:

- Application of C / C++ programming on an embedded system
- Using the PICEBS development board with a PIC18F87K22
- Testing of firmware

System description

The PICEBS board has 3 buttons and a led bar with ten leds. You have to develop a firmware, the responds to the following specifications:

- Click the first button: led1 starts blinking
- Click the first button again: led1 stops blinking
- Click the second button: led10 starts blinking
- Click the second button again: led10 stops blinking
- Double click the first button: led1 blinks three times
- Double click the second button: led10 blinks three times
- Long click either the first or the second button: led1 and led10 start blinking
- Long click either the first or the second button again: led1 and led10 stop blinking

Task description

Analysis

- Develop a physical (deployment) diagram of the above specified system with the nodes μ Controller, 2 leds and two buttons.
- Develop a use case diagram with the use cases click, double click, and long click.
- Develop the sunny day sequence diagrams for each use case. Use the objects user, buttonX, controller, and ledX. buttonX means either 1 or 2. ledX means either 1 or 10.

Design

- Define packages as relevant for this system.
- Derive classes and methods from the sequence diagrams.
- Develop a class diagram with classes, packages, and relations among classes. For each class, give its attributes and methods.

Implementation

- Develop the state machine of the Button class. It must be a polling state machine. This means the buttons do not generate interruptions, but the state machine is reading the button state each 20 ms or similar.
- Develop the state machine of a class which handles click, double click, and long click.
- Develop the state machine of the main controller class.
- Implement all classes in object-oriented C for the PIC18F87K22 µController.

Test

- Define a test prescription for the click scenarios.
- Define a test prescription for the double click scenarios.
- Define a test prescription for the long click scenarios.
- Run the tests.
- Document the test results. Make conclusions on what should be changed or optimized.

Deliverables

The following deliverables are required:

- All UML diagrams.
- The MPLAB project.
- The test prescriptions and results.

Diagrams and test stuff are delivered exclusively in pdf format. Pack your entire deliverables in a zip file with the name: namePrenameSemProj.zip. A delivery will be opened in Cyberlearn as usual. Do not miss the deadline. We will not accept any deliveries by email.