140 lines
4.8 KiB
Python

from __future__ import annotations
from math import inf, sqrt
from typing import Iterator, Optional
from src.graph.node import Node
from src.graph.edge import Edge
class Graph:
def __init__(self):
self.edges: list[Edge] = []
self.nodes: list[Node] = []
def add_node(self, x: int, z: int, name: str = "") -> None:
self.nodes.append(Node(x, z, len(self.nodes), name))
def add_edge(self, start_index: int, end_index: int, auto_length: bool = True) -> None:
length = 0
if auto_length:
n1, n2 = self.nodes[start_index], self.nodes[end_index]
length = sqrt((n1.x - n2.x)**2 + (n1.z - n2.z)**2)
self.edges.append(Edge(start_index, end_index, length, len(self.edges)))
def delete_edge(self, edge: Edge) -> None:
self.edges.remove(edge)
for ed in self.edges:
ed.index = self.edges.index(ed)
def delete_node(self, node: Node) -> None:
edges_to_delete = []
for edge in self.edges:
if node.index in (edge.start, edge.end):
edges_to_delete.append(edge)
continue
if edge.start > node.index:
edge.start -= 1
if edge.end > node.index:
edge.end -= 1
for edge in edges_to_delete:
self.delete_edge(edge)
self.nodes.remove(node)
for no in self.nodes:
no.index = self.nodes.index(no)
def recompute_lengths(self) -> None:
for edge in self.edges:
n1 = self.nodes[edge.start]
n2 = self.nodes[edge.end]
edge.length = sqrt((n1.x - n2.x)**2 + (n1.z - n2.z)**2)
def number_of_nodes(self) -> int:
return len(self.nodes)
def get_edge(self, node_1: int, node_2: int) -> int:
for edge in self.edges:
if (edge.start == node_1 and edge.end == node_2) or (edge.start == node_2 and edge.end == node_1):
return self.edges.index(edge)
return -1
def get_edge_nodes(self, edge: Edge) -> tuple[Node, Node]:
return self.nodes[edge.start], self.nodes[edge.end]
def get_edge_center(self, edge_index: int) -> tuple[float, float]:
edge = self.edges[edge_index]
start_n = self.nodes[edge.start]
end_n = self.nodes[edge.end]
return (start_n.x + end_n.x) / 2, (start_n.z + end_n.z) / 2
def edges_adjacent_to(self, node_i: int) -> Iterator[Edge]:
return filter(lambda e: e.start == node_i or e.end == node_i, self.edges)
def edge_exists(self, node_1: int, node_2: int) -> bool:
return self.get_edge(node_1, node_2) != -1
def dijkstra(self, source_index: int, target_index: int) -> Optional[list[int]]:
n = len(self.nodes)
if source_index < 0 or source_index >= n:
return None
if target_index < 0 or target_index >= n:
return None
unvisited = list(range(n))
distances_from_start = [inf] * n
distances_from_start[source_index] = 0
node_sequences = [[] for _ in range(n)]
node_sequences[source_index] = [source_index]
while True:
current_index = min(unvisited, key=lambda i: distances_from_start[i])
if current_index == target_index:
break
unvisited.remove(current_index)
for edge in self.edges_adjacent_to(current_index):
start = current_index
end = edge.end if edge.start == current_index else edge.start
if end in unvisited and distances_from_start[end] > distances_from_start[start] + edge.length:
distances_from_start[end] = distances_from_start[start] + edge.length
node_sequences[end] = node_sequences[start].copy()
node_sequences[end].append(end)
return node_sequences[target_index]
def save(self, path: str) -> None:
with open(path, "w") as f:
for node in self.nodes:
f.write(f"n {node.x} {node.z} {node.name}\n")
f.write("\n")
for edge in self.edges:
f.write(f"e {edge.start} {edge.end}\n")
@staticmethod
def load(path: str) -> Graph:
graph = Graph()
with open(path, "r") as f:
lines = f.read().splitlines()
for line in lines:
if len(line.strip()) == 0:
continue
entry_type, values = line.split(" ", 1)
if entry_type == "n":
x, z, name = values.split(" ", 2)
x, z = int(x), int(z)
graph.add_node(x, z, name)
elif entry_type == "e":
start, end = values.split(" ", 2)
start, end = int(start), int(end)
graph.add_edge(start, end, False)
graph.recompute_lengths()
return graph