1
0

Merge branch 'main' of git.kb28.ch:HEL/OS-Lab-Scheduler

This commit is contained in:
Louis Heredero 2024-10-15 10:53:57 +02:00
commit 1d97ee7150
Signed by: HEL
GPG Key ID: 8D83DE470F8544E7
7 changed files with 130 additions and 13 deletions

10
executionFCFS.csv Normal file
View File

@ -0,0 +1,10 @@
1,10,0,0
2,40,0,0
3,50,30,0
4,30,20,0
5,40,10,0
6,50,30,0
7,90,40,0
8,90,60,0
9,50,40,0
10,90,30,0
1 1 10 0 0
2 2 40 0 0
3 3 50 30 0
4 4 30 20 0
5 5 40 10 0
6 6 50 30 0
7 7 90 40 0
8 8 90 60 0
9 9 50 40 0
10 10 90 30 0

10
executionRR.csv Normal file
View File

@ -0,0 +1,10 @@
1,10,0,4
2,84,44,19
3,42,24,9
4,22,14,4
5,94,66,14
6,66,48,9
7,148,100,24
8,98,70,14
9,30,22,4
10,90,32,29
1 1 10 0 4
2 2 84 44 19
3 3 42 24 9
4 4 22 14 4
5 5 94 66 14
6 6 66 48 9
7 7 148 100 24
8 8 98 70 14
9 9 30 22 4
10 10 90 32 29

1
performanceFCFS.csv Normal file
View File

@ -0,0 +1 @@
290,0,0
1 290 0 0

1
performanceRR.csv Normal file
View File

@ -0,0 +1 @@
290,130,0
1 290 130 0

11
results.csv Normal file
View File

@ -0,0 +1,11 @@
PID,Arrival Time,Execution Time,Wait Time,Turnaround Time,Remaining Time
1,0,10,6,14,0
2,20,40,545,129,0
3,30,20,123,54,0
4,60,10,42,33,0
5,80,30,709,140,0
6,90,20,295,90,0
7,100,50,2016,196,0
8,130,30,739,131,0
9,180,10,60,46,0
10,200,60,1694,143,0
1 PID Arrival Time Execution Time Wait Time Turnaround Time Remaining Time
2 1 0 10 6 14 0
3 2 20 40 545 129 0
4 3 30 20 123 54 0
5 4 60 10 42 33 0
6 5 80 30 709 140 0
7 6 90 20 295 90 0
8 7 100 50 2016 196 0
9 8 130 30 739 131 0
10 9 180 10 60 46 0
11 10 200 60 1694 143 0

View File

@ -4,6 +4,7 @@
#define RR_QUANTUM 2
#define CNTXT_SWITCH 1
#define MAX_PROCESSES 10
enum pstate {
WAITING,
@ -21,7 +22,7 @@ struct pinfo {
int wait_time;
int turnaround_time;
int remaining_time;
int n_preempted;
int nb_time_pre_empted; // Ajouté pour compter les préemptions
enum pstate state;
struct pinfo * next_pinfo;
@ -79,12 +80,13 @@ struct pinfo * create_process(int id, int arrival_time, int execution_time, int
info->wait_time = 0;
info->turnaround_time = 0;
info->remaining_time = execution_time;
info->n_preempted = 0;
info->nb_time_pre_empted = 0; // Initialiser le nombre de préemptions
info->state = WAITING;
info->next_pinfo = NULL;
return info;
}
// Méthode de planification FCFS
struct perf_info schedule_FCFS(struct pinfo * processes) {
int current_time = 0;
struct pinfo * process = processes;
@ -253,7 +255,7 @@ struct perf_info schedule_Pr(struct pinfo * processes) {
printf("Next process (%d) has higher priority\n", next->id);
if (current->state == RUNNING) {
printf(" Preempting current process (%d)\n", current->id);
current->n_preempted++;
current->nb_time_pre_empted++;
current_time += CNTXT_SWITCH;
perf.total_nr_ctxt_switch++;
}
@ -303,6 +305,91 @@ void compute_waiting_time(struct pinfo * processes) {
}
}
struct perf_info schedule_RR(struct pinfo *processes) { // Déclaration de la fonction schedule_RR qui prend un pointeur vers une liste de processus
struct perf_info perf = {0, 0, 0}; // Initialisation de la structure de performance avec des valeurs à zéro
int current_time = 0; // Variable pour suivre le temps actuel
int finished_processes = 0; // Compteur pour le nombre de processus terminés
while (finished_processes < MAX_PROCESSES) { // Boucle principale jusqu'à ce que tous les processus soient terminés
int process_found = 0; // Indicateur pour savoir si un processus prêt a été trouvé
struct pinfo *current_process = processes; // Pointeur pour parcourir la liste des processus
while (current_process != NULL) { // Boucle pour parcourir tous les processus
// Vérifiez si le processus est prêt à s'exécuter
if (current_process->state != FINISHED && current_process->arrival_time <= current_time) { // Vérifie si le processus n'est pas fini et est arrivé
process_found = 1; // Un processus prêt à s'exécuter a été trouvé
int time_slice = (current_process->remaining_time < RR_QUANTUM) ? current_process->remaining_time : RR_QUANTUM; // Calcule la tranche de temps à exécuter
// Simuler l'exécution
current_time += time_slice; // Incrémente le temps actuel par la tranche de temps
current_process->remaining_time -= time_slice; // Diminue le temps restant du processus
// Calculer les temps d'attente pour les autres processus
struct pinfo *other_process = processes; // Pointeur pour parcourir à nouveau la liste des processus
while (other_process != NULL) { // Boucle pour parcourir tous les autres processus
if (other_process->state != FINISHED && other_process != current_process && other_process->arrival_time <= current_time) { // Vérifie si l'autre processus est prêt
other_process->wait_time += time_slice; // Augmente le temps d'attente des autres processus
}
other_process = other_process->next_pinfo; // Passe au processus suivant
}
// Gérer les statistiques de préemption
if (current_process->remaining_time == 0) { // Vérifie si le processus est terminé
current_process->state = FINISHED; // Met à jour l'état du processus à fini
finished_processes++; // Incrémente le compteur de processus terminés
current_process->turnaround_time = current_time - current_process->arrival_time; // Calcule le temps de turnaround
} else {
// Incrémenter le nombre de préemptions
current_process->nb_time_pre_empted++; // Incrémente le compteur de préemptions pour le processus actuel
perf.total_nr_ctxt_switch++; // Incrémente le nombre total de commutations de contexte
}
// Débogage : Afficher les informations du processus
printf("Processus %d: remaining_time=%d, nb_time_pre_empted=%d\n", // Affiche les informations de débogage pour le processus actuel
current_process->id, current_process->remaining_time, current_process->nb_time_pre_empted);
}
current_process = current_process->next_pinfo; // Passe au processus suivant dans la liste
}
if (!process_found) { // Vérifie si aucun processus prêt n'a été trouvé
// Aucun processus prêt, avancer le temps
current_time++; // Incrémente le temps actuel si aucun processus n'est prêt
}
}
perf.total_time = current_time; // Enregistre le temps total écoulé dans la structure de performance
return perf; // Renvoie la structure de performance
}
void write_file(struct pinfo * process, struct perf_info * perf) {
FILE *myStream_execution = fopen("executionRR.csv", "w");
FILE *myStream_performance = fopen("performanceRR.csv", "w");
if (myStream_execution == NULL || myStream_performance == NULL) {
perror("Erreur à l'ouverture des fichiers");
return;
}
while (process != NULL) {
fprintf(myStream_execution, "%d,%d,%d,%d\n",
process->id,
process->turnaround_time,
process->wait_time,
process->nb_time_pre_empted);
process = process->next_pinfo;
}
fclose(myStream_execution);
fprintf(myStream_performance, "%d,%d,%d\n",
perf->total_time,
perf->total_nr_ctxt_switch,
perf->total_time_ctxt_switch);
fclose(myStream_performance);
}
struct pinfo * read_file() {
FILE * file = fopen("tasks.csv", "r");
unsigned long buf_size = sizeof(char) * 64;
@ -329,12 +416,12 @@ struct pinfo * read_file() {
atoi(prio_str)
);
// If linked list not initialized
// Si la liste n'est pas initialisée
if (first == NULL) {
first = process;
}
// If there is an element in list
// Si un élément est déjà dans la liste
if (last != NULL) {
last->next_pinfo = process;
}
@ -347,10 +434,6 @@ struct pinfo * read_file() {
return first;
}
void write_file(struct pinfo * process, struct perf_info * perf) {
// TODO
}
void free_processes(struct pinfo * next) {
struct pinfo * cur;
while (next != NULL) {
@ -360,17 +443,18 @@ void free_processes(struct pinfo * next) {
}
}
int main() {
struct pinfo * processes = read_file();
//struct perf_info perf = schedule_FCFS(processes);
//struct perf_info perf = schedule_RR(processes);
struct perf_info perf = schedule_Pr(processes);
compute_waiting_time(processes);
//write_file(processes, &perf);
print_processes(processes);
print_perf(&perf);
write_file(processes, &perf);
free_processes(processes);

BIN
tempCodeRunnerFile Executable file

Binary file not shown.