1
0
OS-Lab-Scheduler/simulator.c
florian.sauzeat df8f5a5f78 Bugg
2024-10-15 15:04:55 +02:00

478 lines
14 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define RR_QUANTUM 1
#define CNTXT_SWITCH 1
int MAX_PROCESSES = 0;
enum pstate {
WAITING,
READY,
RUNNING,
FINISHED
};
struct pinfo {
int id;
int arrival_time;
int execution_time;
int priority;
int wait_time;
int turnaround_time;
int remaining_time;
int nb_time_pre_empted; // Ajouté pour compter les préemptions
enum pstate state;
struct pinfo * next_pinfo;
};
int n_processes(struct pinfo * head) {
int n = 0;
while (head != NULL) {
n++;
head = head->next_pinfo;
}
return n;
}
struct perf_info {
int total_time;
int total_nr_ctxt_switch;
int total_time_ctxt_switch;
};
void print_perf(struct perf_info * perf) {
printf("Total time: %d\n", perf->total_time);
printf("Total number of context switches: %d\n", perf->total_nr_ctxt_switch);
printf("Total time spent on context switching: %d\n", perf->total_time_ctxt_switch);
}
void print_pinfo(struct pinfo * info) {
printf("<Process {\n");
printf(" PID: %d\n", info->id);
printf(" Arrival time: %d\n", info->arrival_time);
printf(" Execution time: %d\n", info->execution_time);
printf(" Priority: %d\n", info->priority);
printf(" Wait time: %d\n", info->wait_time);
printf(" Turnaround time: %d\n", info->turnaround_time);
printf(" Remaining time: %d\n", info->remaining_time);
printf(" NEXT -> %p\n", info->next_pinfo);
printf("}>\n");
}
void print_processes(struct pinfo * processes) {
while (processes != NULL) {
print_pinfo(processes);
processes = processes->next_pinfo;
}
}
struct pinfo * create_process(int id, int arrival_time, int execution_time, int priority) {
struct pinfo * info = malloc(sizeof(struct pinfo));
info->id = id;
info->arrival_time = arrival_time;
info->execution_time = execution_time;
info->priority = priority;
info->wait_time = 0;
info->turnaround_time = 0;
info->remaining_time = execution_time;
info->nb_time_pre_empted = 0; // Initialiser le nombre de préemptions
info->state = WAITING;
info->next_pinfo = NULL;
return info;
}
// Méthode de planification FCFS
struct perf_info schedule_FCFS(struct pinfo * processes) {
int current_time = 0;
struct pinfo * process = processes;
struct perf_info perf = {0, 0, 0};
while (process != NULL) {
int wait_time = current_time - process->arrival_time;
if (wait_time < 0) {
wait_time = 0;
}
process->wait_time = wait_time;
process->turnaround_time = process->execution_time + process->wait_time;
current_time = process->arrival_time + process->turnaround_time;
process = process->next_pinfo;
}
perf.total_time = current_time;
return perf;
}
struct prio_list {
struct pinfo ** proc;
int length;
};
/**
* Pops and returns the last element (highest priority) of the given priority list
*
* Returns NULL if the list is empty
*/
struct pinfo * prio_list_pop(struct prio_list * list) {
if (list->length == 0) {
return NULL;
}
list->length--;
return *(list->proc + list->length);
}
/**
* Adds the given process in the priority list at
* the appropriate place (according to its priority)
*/
void prio_list_add(struct prio_list * list, struct pinfo * proc) {
struct pinfo * proc2;
int idx = 0;
// Find first element (from the right) with lower priority
for (int i=list->length-1; i>=0; i--) {
proc2 = *(list->proc + i);
if (proc2->priority > proc->priority) {
idx = i+1;
break;
}
}
// Shift elements
for (int j=list->length-1; j>=idx; j--) {
*(list->proc + j + 1) = *(list->proc + j);
}
*(list->proc + idx) = proc;
list->length++;
}
/**
* Creates a new priority list
*/
struct prio_list * create_prio_list(int max_size) {
struct pinfo ** processes = (struct pinfo **) malloc(sizeof(struct pinfo *) * max_size);
struct prio_list * list = (struct prio_list *) malloc(sizeof(struct prio_list));
list->length = 0;
list->proc = processes;
return list;
}
/**
* Returns the last element (highest priority) of the given priority list
*/
struct pinfo * prio_list_last(struct prio_list * list) {
return *(list->proc + list->length - 1);
}
/**
* Prints the pids of the processes in the given priority list
*/
void prio_list_print(struct prio_list * list) {
printf("queue: ");
for (int i=0; i < list->length; i++) {
if (i != 0) {
printf(", ");
}
printf("%d", (*(list->proc + i))->id);
}
printf("\n");
}
struct perf_info schedule_Pr(struct pinfo * processes) {
struct perf_info perf = {0, 0, 0};
int current_time = 0;
struct pinfo * current = NULL;
struct pinfo * next = processes;
int N = n_processes(processes);
printf("N = %d\n", N);
struct prio_list * queue = create_prio_list(N);
int finished = 0;
while (finished != N) {
printf("\nCurrent time: %d / ", current_time);
if (current != NULL) {
printf("Current: %d / ", current->id);
} else {
printf("Current: none / ");
}
if (next != NULL) {
printf("Next: %d\n", next->id);
} else {
printf("Next: none\n");
}
if (current == NULL) {
printf("No running process: running %d\n", next->id);
current = next;
current->state = RUNNING;
next = next->next_pinfo;
} else if (next != NULL) {
next->state = READY;
prio_list_print(queue);
printf("Processing next process (%d)\n", next->id);
// If current finished before next
while (current != NULL && current_time + current->remaining_time <= next->arrival_time) {
printf(" Process %d finished before next\n", current->id);
current->state = FINISHED;
current_time += current->remaining_time;
current->turnaround_time = current_time - current->arrival_time;
current->remaining_time = 0;
finished++;
current = prio_list_pop(queue);
}
if (current != NULL) {
printf("Removing time from current process\n");
current->remaining_time -= next->arrival_time - current_time;
current->turnaround_time += next->arrival_time - current_time;
}
if (next->arrival_time > current_time) {
current_time = next->arrival_time;
}
next->state = READY;
// If no running process, immediately run next process
if (current == NULL) {
printf("Queue is empty, running next process %d\n", next->id);
current = next;
current->state = RUNNING;
next = next->next_pinfo;
} else if (next->priority < current->priority) {
// Preempt current process
printf("Next process (%d) has higher priority\n", next->id);
if (current->state == RUNNING) {
printf(" Preempting current process (%d)\n", current->id);
current->nb_time_pre_empted++;
current_time += CNTXT_SWITCH;
perf.total_nr_ctxt_switch++;
}
current->state = READY;
prio_list_add(queue, current);
// Run process with higher priority
current = next;
current->state = RUNNING;
next = next->next_pinfo;
} else {
printf("Adding next process (%d) to list\n", next->id);
prio_list_add(queue, next);
next = next->next_pinfo;
}
if (current != NULL) {
current->state = RUNNING;
}
} else {
printf("No new processes, emptying queue\n");
while (current != NULL) {
printf("Completing process %d\n", current->id);
current->state = FINISHED;
current_time += current->remaining_time;
current->turnaround_time = current_time - current->arrival_time;
current->remaining_time = 0;
finished++;
current = prio_list_pop(queue);
if (current != NULL) {
current->state = RUNNING;
}
}
}
}
perf.total_time = current_time;
perf.total_time_ctxt_switch = perf.total_nr_ctxt_switch * CNTXT_SWITCH;
return perf;
}
void compute_waiting_time(struct pinfo * processes) {
while (processes != NULL) {
processes->wait_time = processes->turnaround_time - processes->execution_time;
processes = processes->next_pinfo;
}
}
struct perf_info schedule_RR(struct pinfo *processes) {
struct perf_info perf = {0, 0, 0}; // Initialisation de la structure de performance
int current_time = 0; // Temps actuel
int finished_processes = 0; // Compteur de processus terminés
while (finished_processes < MAX_PROCESSES) {
int process_found = 0; // Indicateur de processus trouvé
struct pinfo *current_process = processes;
while (current_process != NULL) {
// Vérifie si le processus est prêt à être exécuté
if (current_process->state != FINISHED && current_process->arrival_time <= current_time) {
process_found = 1; // Un processus prêt a été trouvé
// Détermine la tranche de temps à exécuter (quantum ou le temps restant, selon le moindre)
int time_slice = (current_process->remaining_time < RR_QUANTUM) ? current_process->remaining_time : RR_QUANTUM;
// Simule l'exécution
current_time += time_slice;
current_process->remaining_time -= time_slice;
// Mise à jour du temps d'attente des autres processus
struct pinfo *other_process = processes;
while (other_process != NULL) {
if (other_process->state != FINISHED && other_process != current_process && other_process->arrival_time <= current_time) {
other_process->wait_time += time_slice;
}
other_process = other_process->next_pinfo;
}
// Gestion des statistiques de préemption
if (current_process->remaining_time == 0) {
current_process->state = FINISHED; // Marquer le processus comme terminé
finished_processes++; // Incrémenter le compteur des processus terminés
current_process->turnaround_time = current_time - current_process->arrival_time; // Calculer le temps de turnaround
} else {
// Incrémenter le nombre de préemptions uniquement si le processus est interrompu avant de terminer
if (time_slice == RR_QUANTUM) {
current_process->nb_time_pre_empted++; // Incrémente le compteur de préemptions
perf.total_nr_ctxt_switch++; // Incrémente le compteur des commutations de contexte
// Débogage : Afficher les informations du processus
printf("Current time %d: Processus %d: remaining_time=%d, nb_time_pre_empted=%d\n", 1 ,
current_process->id, current_process->remaining_time, current_process->nb_time_pre_empted);
}
}
}
current_process = current_process->next_pinfo;
}
if (!process_found) {
current_time++; // Si aucun processus n'est prêt, incrémente le temps
}
}
perf.total_time = current_time;
perf.total_time_ctxt_switch = perf.total_nr_ctxt_switch * CNTXT_SWITCH;
return perf;
}
void write_file(struct pinfo * process, struct perf_info * perf) {
FILE *myStream_execution = fopen("executionRRtest.csv", "w");
FILE *myStream_performance = fopen("performanceRRtest.csv", "w");
if (myStream_execution == NULL || myStream_performance == NULL) {
perror("Erreur à l'ouverture des fichiers");
return;
}
while (process != NULL) {
fprintf(myStream_execution, "%d,%d,%d,%d\n",
process->id,
process->turnaround_time,
process->wait_time,
process->nb_time_pre_empted);
process = process->next_pinfo;
}
fclose(myStream_execution);
fprintf(myStream_performance, "%d,%d,%d\n",
perf->total_time,
perf->total_nr_ctxt_switch,
perf->total_time_ctxt_switch);
fclose(myStream_performance);
}
struct pinfo * read_file() {
FILE * file = fopen("tasks RR.csv", "r");
unsigned long buf_size = sizeof(char) * 64;
char * line = (char *) malloc(buf_size);
char * pid_str;
char * arrival_str;
char * execution_str;
char * prio_str;
struct pinfo * first = NULL;
struct pinfo * last = NULL;
struct pinfo * process;
while (fgets(line, buf_size, file)) {
MAX_PROCESSES += 1;
pid_str = strtok(line, " ");
arrival_str = strtok(NULL, " ");
execution_str = strtok(NULL, " ");
prio_str = strtok(NULL, " ");
process = create_process(
atoi(pid_str),
atoi(arrival_str),
atoi(execution_str),
atoi(prio_str)
);
// Si la liste n'est pas initialisée
if (first == NULL) {
first = process;
}
// Si un élément est déjà dans la liste
if (last != NULL) {
last->next_pinfo = process;
}
last = process;
print_pinfo(process);
}
free(line);
fclose(file);
printf("Maximum des processus : %d\n", MAX_PROCESSES);
return first;
}
void free_processes(struct pinfo * next) {
struct pinfo * cur;
while (next != NULL) {
cur = next;
next = cur->next_pinfo;
free(cur);
}
}
int main() {
struct pinfo * processes = read_file();
//struct perf_info perf = schedule_FCFS(processes);
struct perf_info perf = schedule_RR(processes);
//struct perf_info perf = schedule_Pr(processes);
compute_waiting_time(processes);
write_file(processes, &perf);
free_processes(processes);
return 0;
}