Merge pull request #9 from Fastium/architecture-bike-computer

ADD architecture (speedometer and sensor device) for the bike computer
This commit is contained in:
Fastium 2024-11-05 16:32:07 +01:00 committed by GitHub
commit 7ef2519c9c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 912 additions and 1 deletions

View File

@ -19,7 +19,9 @@ jobs:
tests-simple-test-ptr-test, tests-simple-test-ptr-test,
tests-simple-unique-ptr, tests-simple-unique-ptr,
tests-simple-test-raw-ptr, tests-simple-test-raw-ptr,
advdembsof_library-tests-sensors-hdc1000 advdembsof_library-tests-sensors-hdc1000,
tests-bike-computer-sensor-device,
tests-bike-computer-speedometer
] ]

View File

@ -0,0 +1,69 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file main.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Bike computer test suite: sensor device
*
* @date 2023-08-26
* @version 0.1.0
***************************************************************************/
#include "greentea-client/test_env.h"
#include "hdc1000.hpp"
#include "mbed.h"
#include "sensor_device.hpp"
#include "unity/unity.h"
#include "utest/utest.h"
using namespace utest::v1;
// test_hdc1000 test handler function
static control_t test_sensor_device(const size_t call_count) {
// create the SensorDevice instance
bike_computer::SensorDevice sensorDevice;
bool rc = sensorDevice.init();
TEST_ASSERT_TRUE(rc);
float temperature = sensorDevice.readTemperature();
static constexpr float kTemperatureRange = 20.0f;
static constexpr float kMeanTemperature = 15.0f;
TEST_ASSERT_FLOAT_WITHIN(kTemperatureRange, kMeanTemperature, temperature);
float humidity = sensorDevice.readHumidity();
static constexpr float kHumidityRange = 40.0f;
static constexpr float kMeanHumidity = 50.0f;
TEST_ASSERT_FLOAT_WITHIN(kHumidityRange, kMeanHumidity, humidity);
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
static utest::v1::status_t greentea_setup(const size_t number_of_cases) {
// Here, we specify the timeout (60s) and the host test (a built-in host test or the
// name of our Python file)
GREENTEA_SETUP(60, "default_auto");
return greentea_test_setup_handler(number_of_cases);
}
// List of test cases in this file
static Case cases[] = {Case("test sensor device", test_sensor_device)};
static Specification specification(greentea_setup, cases);
int main() { return !Harness::run(specification); }

View File

@ -0,0 +1,354 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file main.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Bike computer test suite: speedometer device
*
* @date 2023-08-26
* @version 0.1.0
***************************************************************************/
#include <chrono>
#include "common/constants.hpp"
#include "common/speedometer.hpp"
#include "greentea-client/test_env.h"
#include "mbed.h"
#include "static_scheduling/gear_device.hpp"
#include "unity/unity.h"
#include "utest/utest.h"
using namespace utest::v1;
// allow for 0.1 km/h difference
static constexpr float kAllowedSpeedDelta = 0.1f;
// allow for 1m difference
static constexpr float kAllowedDistanceDelta = 1.0f / 1000.0;
// function called by test handler functions for verifying the current speed
void check_current_speed(const std::chrono::milliseconds& pedalRotationTime,
uint8_t traySize,
uint8_t gearSize,
float wheelCircumference,
float currentSpeed) {
// compute the number of pedal rotation per hour
uint32_t milliSecondsPerHour = 1000 * 3600;
float pedalRotationsPerHour = static_cast<float>(milliSecondsPerHour) /
static_cast<float>(pedalRotationTime.count());
// compute the expected speed in km / h
// first compute the distance in meter for each pedal turn
float trayGearRatio = static_cast<float>(traySize) / static_cast<float>(gearSize);
float distancePerPedalTurn = trayGearRatio * wheelCircumference;
float expectedSpeed = (distancePerPedalTurn / 1000.0f) * pedalRotationsPerHour;
printf(" Expected speed is %f, current speed is %f\n", expectedSpeed, currentSpeed);
TEST_ASSERT_FLOAT_WITHIN(kAllowedSpeedDelta, expectedSpeed, currentSpeed);
}
// compute the traveled distance for a time interval
float compute_distance(const std::chrono::milliseconds& pedalRotationTime,
uint8_t traySize,
uint8_t gearSize,
float wheelCircumference,
const std::chrono::milliseconds& travelTime) {
// compute the number of pedal rotation during travel time
// both times are expressed in ms
float pedalRotations = static_cast<float>(travelTime.count()) /
static_cast<float>(pedalRotationTime.count());
// compute the distance in meter for each pedal turn
float trayGearRatio = static_cast<float>(traySize) / static_cast<float>(gearSize);
float distancePerPedalTurn = trayGearRatio * wheelCircumference;
// distancePerPedalTurn is expressed in m, divide per 1000 for a distance in km
return (distancePerPedalTurn * pedalRotations) / 1000.0;
}
// function called by test handler functions for verifying the distance traveled
void check_distance(const std::chrono::milliseconds& pedalRotationTime,
uint8_t traySize,
uint8_t gearSize,
float wheelCircumference,
const std::chrono::milliseconds& travelTime,
float distance) {
// distancePerPedalTurn is expressed in m, divide per 1000 for a distance in km
float expectedDistance = compute_distance(
pedalRotationTime, traySize, gearSize, wheelCircumference, travelTime);
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
distance);
TEST_ASSERT_FLOAT_WITHIN(kAllowedDistanceDelta, expectedDistance, distance);
}
// test the speedometer by modifying the gear
static control_t test_gear_size(const size_t call_count) {
// create a timer
Timer timer;
// start the timer
timer.start();
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// get speedometer constant values (for this test)
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
const auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
for (uint8_t gearSize = bike_computer::kMinGearSize;
gearSize <= bike_computer::kMaxGearSize;
gearSize++) {
// set the gear
printf("Testing gear size %d\n", gearSize);
speedometer.setGearSize(gearSize);
// get the current speed
auto currentSpeed = speedometer.getCurrentSpeed();
// check the speed against the expected one
check_current_speed(
pedalRotationTime, traySize, gearSize, wheelCircumference, currentSpeed);
}
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
// test the speedometer by modifying the pedal rotation speed
static control_t test_rotation_speed(const size_t call_count) {
// create a timer
Timer timer;
// start the timer
timer.start();
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// set the gear size
speedometer.setGearSize(bike_computer::kMaxGearSize);
// get speedometer constant values
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
const auto gearSize = speedometer.getGearSize();
// first test increasing rotation speed (decreasing rotation time)
auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
while (pedalRotationTime > bike_computer::kMinPedalRotationTime) {
// decrease the pedal rotation time
pedalRotationTime -= bike_computer::kDeltaPedalRotationTime;
speedometer.setCurrentRotationTime(pedalRotationTime);
// get the current speed
const auto currentSpeed = speedometer.getCurrentSpeed();
// check the speed against the expected one
check_current_speed(
pedalRotationTime, traySize, gearSize, wheelCircumference, currentSpeed);
}
// second test decreasing rotation speed (increasing rotation time)
pedalRotationTime = speedometer.getCurrentPedalRotationTime();
while (pedalRotationTime < bike_computer::kMaxPedalRotationTime) {
// increase the pedal rotation time
pedalRotationTime += bike_computer::kDeltaPedalRotationTime;
speedometer.setCurrentRotationTime(pedalRotationTime);
// get the current speed
const auto currentSpeed = speedometer.getCurrentSpeed();
// check the speed against the expected one
check_current_speed(
pedalRotationTime, traySize, gearSize, wheelCircumference, currentSpeed);
}
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
// test the speedometer by modifying the pedal rotation speed
static control_t test_distance(const size_t call_count) {
// create a timer
Timer timer;
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// set the gear size
speedometer.setGearSize(bike_computer::kMaxGearSize);
// get speedometer constant values
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
auto gearSize = speedometer.getGearSize();
auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
// test different travel times
const std::chrono::milliseconds travelTimes[] = {500ms, 1000ms, 5s, 10s};
const uint8_t nbrOfTravelTimes = sizeof(travelTimes) / sizeof(travelTimes[0]);
// start the timer (for simulating bike start)
timer.start();
// first check travel distance without changing gear and rotation speed
std::chrono::milliseconds totalTravelTime = std::chrono::milliseconds::zero();
for (uint8_t index = 0; index < nbrOfTravelTimes; index++) {
// run for the travel time and get the distance
ThisThread::sleep_for(travelTimes[index]);
// get the distance traveled
const auto distance = speedometer.getDistance();
// accumulate travel time
totalTravelTime += travelTimes[index];
// check the distance vs the expected one
check_distance(pedalRotationTime,
traySize,
gearSize,
wheelCircumference,
totalTravelTime,
distance);
}
// now change gear at each time interval
auto expectedDistance = speedometer.getDistance();
for (uint8_t index = 0; index < nbrOfTravelTimes; index++) {
// update the gear size
gearSize++;
speedometer.setGearSize(gearSize);
// run for the travel time and get the distance
ThisThread::sleep_for(travelTimes[index]);
// compute the expected distance for this time segment
float distance = compute_distance(pedalRotationTime,
traySize,
gearSize,
wheelCircumference,
travelTimes[index]);
expectedDistance += distance;
// get the distance traveled
const auto traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(
kAllowedDistanceDelta, expectedDistance, traveledDistance);
}
// now change rotation speed at each time interval
expectedDistance = speedometer.getDistance();
for (uint8_t index = 0; index < nbrOfTravelTimes; index++) {
// update the rotation speed
pedalRotationTime += bike_computer::kDeltaPedalRotationTime;
speedometer.setCurrentRotationTime(pedalRotationTime);
// run for the travel time and get the distance
ThisThread::sleep_for(travelTimes[index]);
// compute the expected distance for this time segment
float distance = compute_distance(pedalRotationTime,
traySize,
gearSize,
wheelCircumference,
travelTimes[index]);
expectedDistance += distance;
// get the distance traveled
const auto traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(
kAllowedDistanceDelta, expectedDistance, traveledDistance);
}
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
// test the speedometer by modifying the pedal rotation speed
static control_t test_reset(const size_t call_count) {
// create a timer instance
Timer timer;
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// set the gear size
speedometer.setGearSize(bike_computer::kMinGearSize);
// get speedometer constant values
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
const auto gearSize = speedometer.getGearSize();
const auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
// start the timer (for simulating bike start)
timer.start();
// travel for 1 second
const auto travelTime = 1000ms;
ThisThread::sleep_for(travelTime);
// check the expected distaance traveled
const auto expectedDistance = compute_distance(
pedalRotationTime, traySize, gearSize, wheelCircumference, travelTime);
// get the distance traveled
auto traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(kAllowedDistanceDelta, expectedDistance, traveledDistance);
// reset the speedometer
speedometer.reset();
// traveled distance should now be zero
traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n", 0.0f, traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(kAllowedDistanceDelta, 0.0f, traveledDistance);
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
static utest::v1::status_t greentea_setup(const size_t number_of_cases) {
// Here, we specify the timeout (60s) and the host test (a built-in host test or the
// name of our Python file)
GREENTEA_SETUP(180, "default_auto");
return greentea_test_setup_handler(number_of_cases);
}
// List of test cases in this file
static Case cases[] = {
Case("test speedometer gear size change", test_gear_size),
Case("test speedometer rotation speed change", test_rotation_speed),
Case("test speedometer distance", test_distance),
Case("test speedometer reset", test_reset)};
static Specification specification(greentea_setup, cases);
int main() { return !Harness::run(specification); }

54
common/constants.hpp Normal file
View File

@ -0,0 +1,54 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file constants.hpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Constants definition used for implementing the bike system
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#pragma once
#include <stdint.h>
#include "mbed.h"
namespace bike_computer {
// gear related constants
static constexpr uint8_t kMinGear = 1;
static constexpr uint8_t kMaxGear = 9;
// smallest gear (= 1) corresponds to a gear size of 20
// when the gear increases, the gear size descreases
static constexpr uint8_t kMaxGearSize = 20;
static constexpr uint8_t kMinGearSize = kMaxGearSize - kMaxGear;
// pedal related constants
// When compiling and linking with gcc, we get a link error when using static
// constexpr. The error is related to template instantiation.
// definition of pedal rotation initial time (corresponds to 80 turn / min)
static constexpr std::chrono::milliseconds kInitialPedalRotationTime = 750ms;
// definition of pedal minimal rotation time (corresponds to 160 turn / min)
static constexpr std::chrono::milliseconds kMinPedalRotationTime = 375ms;
// definition of pedal maximal rotation time (corresponds to 10 turn / min)
static constexpr std::chrono::milliseconds kMaxPedalRotationTime = 1500ms;
// definition of pedal rotation time change upon acceleration/deceleration
static constexpr std::chrono::milliseconds kDeltaPedalRotationTime = 25ms;
} // namespace bike_computer

21
common/sensor_device.cpp Normal file
View File

@ -0,0 +1,21 @@
#include "sensor_device.hpp"
namespace bike_computer {
SensorDevice::SensorDevice() : _hdc1000(I2C_SDA, I2C_SCL, STMOD_11)
{}
bool SensorDevice::init() {
return this->_hdc1000.probe();
}
float SensorDevice::readTemperature(void) {
return this->_hdc1000.getTemperature();
}
float SensorDevice::readHumidity(void) {
return this->_hdc1000.getHumidity();
}
} // bike_computer

49
common/sensor_device.hpp Normal file
View File

@ -0,0 +1,49 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file sensor_device.hpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief SensorDevice header file (static scheduling)
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#pragma once
#include "hdc1000.hpp"
#include "mbed.h"
namespace bike_computer {
class SensorDevice {
public:
// constructor
SensorDevice();
// method for initializing the device
bool init();
// methods used for
float readTemperature(void);
float readHumidity(void);
private:
// data members
advembsof::HDC1000 _hdc1000;
};
} // namespace bike_computer

138
common/speedometer.cpp Normal file
View File

@ -0,0 +1,138 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file speedometer_device.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief WheelCounterDevice implementation (static scheduling)
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#include "speedometer.hpp"
#include "static_scheduling/gear_device.hpp"
#include <chrono>
#include <ratio>
// from disco_h747i/wrappers
#include "joystick.hpp"
#include "mbed_trace.h"
#if MBED_CONF_MBED_TRACE_ENABLE
#define TRACE_GROUP "Speedometer"
#endif // MBED_CONF_MBED_TRACE_ENABLE
namespace bike_computer {
Speedometer::Speedometer(Timer& timer) : _timer(timer) {
// update _lastTime
_lastTime = _timer.elapsed_time();
}
void Speedometer::setCurrentRotationTime(
const std::chrono::milliseconds& currentRotationTime) {
if (_pedalRotationTime != currentRotationTime) {
// compute distance before changing the rotation time
computeDistance();
// change pedal rotation time
_pedalRotationTime = currentRotationTime;
// compute speed with the new pedal rotation time
computeSpeed();
}
}
void Speedometer::setGearSize(uint8_t gearSize) {
if (_gearSize != gearSize) {
// compute distance before chaning the gear size
computeDistance();
// change gear size
_gearSize = gearSize;
// compute speed with the new gear size
computeSpeed();
}
}
float Speedometer::getCurrentSpeed() const { return _currentSpeed; }
float Speedometer::getDistance() {
// make sure to update the distance traveled
computeDistance();
return _totalDistance;
}
void Speedometer::reset() {
// TODO : done
this->_totalDistanceMutex.lock();
this->_totalDistance = 0.0f;
this->_totalDistanceMutex.unlock();
}
#if defined(MBED_TEST_MODE)
uint8_t Speedometer::getGearSize() const { return _gearSize; }
float Speedometer::getWheelCircumference() const { return kWheelCircumference; }
float Speedometer::getTraySize() const { return kTraySize; }
std::chrono::milliseconds Speedometer::getCurrentPedalRotationTime() const {
return _pedalRotationTime;
}
#endif // defined(MBED_TEST_MODE)
void Speedometer::computeSpeed() {
// For computing the speed given a rear gear (braquet), one must divide the size of
// the tray (plateau) by the size of the rear gear (pignon arrière), and then multiply
// the result by the circumference of the wheel. Example: tray = 50, rear gear = 15.
// Distance run with one pedal turn (wheel circumference = 2.10 m) = 50/15 * 2.1 m
// = 6.99m If you ride at 80 pedal turns / min, you run a distance of 6.99 * 80 / min
// ~= 560 m / min = 33.6 km/h
// TODO : done
//Distance run with one pedal turn = tray size / rear gear size * circumference of the wheel
float ms_in_hour = static_cast<float>(3600 * 1000);
float pedal_rotation_per_hour = ms_in_hour / static_cast<float>(_pedalRotationTime.count());
float gear_ratio = static_cast<float>(kTraySize) / static_cast<float>(this->_gearSize);
float wheel_dist_km = static_cast<float>(this->kWheelCircumference) / 1000.0;
this->_currentSpeed = gear_ratio * wheel_dist_km * pedal_rotation_per_hour;
}
void Speedometer::computeDistance() {
// For computing the speed given a rear gear (braquet), one must divide the size of
// the tray (plateau) by the size of the rear gear (pignon arrière), and then multiply
// the result by the circumference of the wheel. Example: tray = 50, rear gear = 15.
// Distance run with one pedal turn (wheel circumference = 2.10 m) = 50/15 * 2.1 m
// = 6.99m If you ride at 80 pedal turns / min, you run a distance of 6.99 * 80 / min
// ~= 560 m / min = 33.6 km/h. We then multiply the speed by the time for getting the
// distance traveled.
// TODO : done
Speedometer::computeSpeed();
// compute distance
float last_time_in_hour = static_cast<float>(std::chrono::duration_cast<std::chrono::hours>(this->_lastTime).count());
float traveled_dist = this->_currentSpeed * last_time_in_hour;
this->_totalDistanceMutex.lock();
this->_totalDistance += traveled_dist;
this->_totalDistanceMutex.unlock();
}
} // namespace bike_computer

91
common/speedometer.hpp Normal file
View File

@ -0,0 +1,91 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file speedometer_device.hpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief WheelCounterDevice header file (static scheduling)
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#pragma once
#include "constants.hpp"
#include "mbed.h"
namespace bike_computer {
class Speedometer {
public:
explicit Speedometer(Timer& timer); // NOLINT(runtime/references)
// method used for setting the current pedal rotation time
void setCurrentRotationTime(const std::chrono::milliseconds& currentRotationTime);
// method used for setting/getting the current gear
void setGearSize(uint8_t gearSize);
// method called for getting the current speed (expressed in km / h)
float getCurrentSpeed() const;
// method called for getting the current traveled distance (expressed in km)
float getDistance();
// method called for resetting the traveled distance
void reset();
// methods used for tests only
#if defined(MBED_TEST_MODE)
uint8_t getGearSize() const;
float getWheelCircumference() const;
float getTraySize() const;
std::chrono::milliseconds getCurrentPedalRotationTime() const;
void setOnResetCallback(mbed::Callback<void()> cb);
#endif // defined(MBED_TEST_MODE)
private:
// private methods
void computeSpeed();
void computeDistance();
// definition of task period time
static constexpr std::chrono::milliseconds kTaskPeriod = 400ms;
// definition of task execution time
static constexpr std::chrono::microseconds kTaskRunTime = 200000us;
// constants related to speed computation
static constexpr float kWheelCircumference = 2.1f;
static constexpr uint8_t kTraySize = 50;
std::chrono::microseconds _lastTime = std::chrono::microseconds::zero();
std::chrono::milliseconds _pedalRotationTime = kInitialPedalRotationTime;
// data members
Timer& _timer;
LowPowerTicker _ticker;
float _currentSpeed = 0.0f;
Mutex _totalDistanceMutex;
float _totalDistance = 0.0f;
uint8_t _gearSize = 1;
Thread _thread;
#if defined(MBED_TEST_MODE)
mbed::Callback<void()> _cb;
#endif
};
} // namespace bike_computer

View File

@ -0,0 +1,83 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file gear_device.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Gear Device implementation (static scheduling)
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#include "gear_device.hpp"
// from disco_h747i/wrappers
#include <chrono>
#include "joystick.hpp"
#include "mbed_trace.h"
#if MBED_CONF_MBED_TRACE_ENABLE
#define TRACE_GROUP "GearDevice"
#endif // MBED_CONF_MBED_TRACE_ENABLE
namespace static_scheduling {
// definition of task execution time
static constexpr std::chrono::microseconds kTaskRunTime = 100000us;
GearDevice::GearDevice(Timer& timer) : _timer(timer) {}
uint8_t GearDevice::getCurrentGear() {
std::chrono::microseconds initialTime = _timer.elapsed_time();
std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// we bound the change to one increment/decrement per call
bool hasChanged = false;
while (elapsedTime < kTaskRunTime) {
if (!hasChanged) {
disco::Joystick::State joystickState =
disco::Joystick::getInstance().getState();
switch (joystickState) {
case disco::Joystick::State::UpPressed:
if (_currentGear < bike_computer::kMaxGear) {
_currentGear++;
}
hasChanged = true;
break;
case disco::Joystick::State::DownPressed:
if (_currentGear > bike_computer::kMinGear) {
_currentGear--;
}
hasChanged = true;
break;
default:
break;
}
}
elapsedTime = _timer.elapsed_time() - initialTime;
}
return _currentGear;
}
uint8_t GearDevice::getCurrentGearSize() const {
// simulate task computation by waiting for the required task run time
// wait_us(kTaskRunTime.count());
return bike_computer::kMaxGearSize - _currentGear;
}
} // namespace static_scheduling

View File

@ -0,0 +1,50 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file gear_device.hpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Gear Device header file (static scheduling)
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#pragma once
#include "constants.hpp"
#include "mbed.h"
namespace static_scheduling {
class GearDevice {
public:
explicit GearDevice(Timer& timer); // NOLINT(runtime/references)
// make the class non copyable
GearDevice(GearDevice&) = delete;
GearDevice& operator=(GearDevice&) = delete;
// method called for updating the bike system
uint8_t getCurrentGear();
uint8_t getCurrentGearSize() const;
private:
// data members
uint8_t _currentGear = bike_computer::kMinGear;
Timer& _timer;
};
} // namespace static_scheduling