ADD cpplint args in action file

This commit is contained in:
fastium
2024-12-18 10:32:03 +01:00
committed by Fastium
parent 84bd49be80
commit db834de1fd
23 changed files with 384 additions and 387 deletions

View File

@ -35,38 +35,34 @@
namespace static_scheduling {
static constexpr std::chrono::milliseconds kGearTaskPeriod = 800ms;
static constexpr std::chrono::milliseconds kGearTaskDelay = 0ms;
static constexpr std::chrono::milliseconds kGearTaskComputationTime = 100ms;
static constexpr std::chrono::milliseconds kSpeedDistanceTaskPeriod = 400ms;
static constexpr std::chrono::milliseconds kSpeedDistanceTaskDelay = 0ms; // 0 or 100ms
static constexpr std::chrono::milliseconds kGearTaskPeriod = 800ms;
static constexpr std::chrono::milliseconds kGearTaskDelay = 0ms;
static constexpr std::chrono::milliseconds kGearTaskComputationTime = 100ms;
static constexpr std::chrono::milliseconds kSpeedDistanceTaskPeriod = 400ms;
static constexpr std::chrono::milliseconds kSpeedDistanceTaskDelay = 0ms; // 0 or 100ms
static constexpr std::chrono::milliseconds kSpeedDistanceTaskComputationTime = 200ms;
static constexpr std::chrono::milliseconds kDisplayTask1Period = 1600ms;
static constexpr std::chrono::milliseconds kDisplayTask1Delay = 300ms;
static constexpr std::chrono::milliseconds kDisplayTask1ComputationTime = 200ms;
static constexpr std::chrono::milliseconds kResetTaskPeriod = 800ms;
static constexpr std::chrono::milliseconds kResetTaskDelay = 700ms;
static constexpr std::chrono::milliseconds kResetTaskComputationTime = 100ms;
static constexpr std::chrono::milliseconds kTemperatureTaskPeriod = 1600ms;
static constexpr std::chrono::milliseconds kTemperatureTaskDelay = 1100ms;
static constexpr std::chrono::milliseconds kTemperatureTaskComputationTime = 100ms;
static constexpr std::chrono::milliseconds kDisplayTask2Period = 1600ms;
static constexpr std::chrono::milliseconds kDisplayTask2Delay = 1200ms;
static constexpr std::chrono::milliseconds kDisplayTask2ComputationTime = 100ms;
static constexpr std::chrono::milliseconds kCPUTaskPeriod = 1600ms;
static constexpr std::chrono::milliseconds kCPUTaskDelay = 0ms;
static constexpr std::chrono::milliseconds kCPUTaskComputationTime = 0ms;
static constexpr std::chrono::milliseconds kDisplayTask1Period = 1600ms;
static constexpr std::chrono::milliseconds kDisplayTask1Delay = 300ms;
static constexpr std::chrono::milliseconds kDisplayTask1ComputationTime = 200ms;
static constexpr std::chrono::milliseconds kResetTaskPeriod = 800ms;
static constexpr std::chrono::milliseconds kResetTaskDelay = 700ms;
static constexpr std::chrono::milliseconds kResetTaskComputationTime = 100ms;
static constexpr std::chrono::milliseconds kTemperatureTaskPeriod = 1600ms;
static constexpr std::chrono::milliseconds kTemperatureTaskDelay = 1100ms;
static constexpr std::chrono::milliseconds kTemperatureTaskComputationTime = 100ms;
static constexpr std::chrono::milliseconds kDisplayTask2Period = 1600ms;
static constexpr std::chrono::milliseconds kDisplayTask2Delay = 1200ms;
static constexpr std::chrono::milliseconds kDisplayTask2ComputationTime = 100ms;
static constexpr std::chrono::milliseconds kCPUTaskPeriod = 1600ms;
static constexpr std::chrono::milliseconds kCPUTaskDelay = 0ms;
static constexpr std::chrono::milliseconds kCPUTaskComputationTime = 0ms;
BikeSystem::BikeSystem() :
_gearDevice(_timer),
_pedalDevice(_timer),
_resetDevice(_timer),
_speedometer(_timer),
_cpuLogger(_timer)
{
}
BikeSystem::BikeSystem()
: _gearDevice(_timer),
_pedalDevice(_timer),
_resetDevice(_timer),
_speedometer(_timer),
_cpuLogger(_timer) {}
void BikeSystem::start() {
tr_info("Starting Super-Loop without event handling");
@ -76,19 +72,17 @@ void BikeSystem::start() {
while (true) {
auto startTime = _timer.elapsed_time();
gearTask(); // 100ms : 0ms -> 100ms
speedDistanceTask(); // 200ms : 100ms -> 300ms
displayTask1(); // 200ms : 300ms -> 500ms
speedDistanceTask(); // 200ms : 500ms -> 700ms
resetTask(); // 100ms : 700ms -> 800ms
gearTask(); // 100ms : 800ms -> 900ms
speedDistanceTask(); // 200ms : 900ms -> 1100ms
temperatureTask(); // 100ms : 1100ms -> 1200ms
displayTask2(); // 100ms : 1200ms -> 1300ms
speedDistanceTask(); // 200ms : 1300ms -> 1500ms
resetTask(); // 100ms : 1500ms -> 1600ms
gearTask(); // 100ms : 0ms -> 100ms
speedDistanceTask(); // 200ms : 100ms -> 300ms
displayTask1(); // 200ms : 300ms -> 500ms
speedDistanceTask(); // 200ms : 500ms -> 700ms
resetTask(); // 100ms : 700ms -> 800ms
gearTask(); // 100ms : 800ms -> 900ms
speedDistanceTask(); // 200ms : 900ms -> 1100ms
temperatureTask(); // 100ms : 1100ms -> 1200ms
displayTask2(); // 100ms : 1200ms -> 1300ms
speedDistanceTask(); // 200ms : 1300ms -> 1500ms
resetTask(); // 100ms : 1500ms -> 1600ms
// register the time at the end of the cyclic schedule period and print the
// elapsed time for the period
@ -97,35 +91,32 @@ void BikeSystem::start() {
std::chrono::duration_cast<std::chrono::milliseconds>(endTime - startTime);
tr_debug("Repeating cycle time is %" PRIu64 " milliseconds", cycle.count());
// TODO: implement loop exit when applicable
// Done
bool fStop = false;
core_util_atomic_load(&fStop);
if (fStop) {
break;
}
#if !defined(MBED_TEST_MODE)
_cpuLogger.printStats();
#endif
#if !defined(MBED_TEST_MODE)
_cpuLogger.printStats();
#endif
}
}
void BikeSystem::startWithEventQueue() {
tr_info("Starting Super-Loop with event handling");
init();
EventQueue eventQueue;
Event<void()> gearEvent(&eventQueue, callback(this, &BikeSystem::gearTask));
gearEvent.delay(kGearTaskDelay);
gearEvent.period(kGearTaskPeriod);
gearEvent.post();
Event<void()> gearEvent(&eventQueue, callback(this, &BikeSystem::gearTask));
gearEvent.delay(kGearTaskDelay);
gearEvent.period(kGearTaskPeriod);
gearEvent.post();
Event<void()> speedDistanceEvent(&eventQueue, callback(this, &BikeSystem::speedDistanceTask));
Event<void()> speedDistanceEvent(&eventQueue,
callback(this, &BikeSystem::speedDistanceTask));
speedDistanceEvent.delay(kSpeedDistanceTaskDelay);
speedDistanceEvent.period(kSpeedDistanceTaskPeriod);
speedDistanceEvent.post();
@ -140,7 +131,8 @@ void BikeSystem::startWithEventQueue() {
resetEvent.period(kResetTaskPeriod);
resetEvent.post();
Event<void()> temperatureEvent(&eventQueue, callback(this, &BikeSystem::temperatureTask));
Event<void()> temperatureEvent(&eventQueue,
callback(this, &BikeSystem::temperatureTask));
temperatureEvent.delay(kTemperatureTaskDelay);
temperatureEvent.period(kTemperatureTaskPeriod);
temperatureEvent.post();
@ -150,14 +142,14 @@ void BikeSystem::startWithEventQueue() {
display2Event.period(kDisplayTask2Period);
display2Event.post();
#if !defined(MBED_TEST_MODE)
Event<void()> cpuEvent(&eventQueue, callback(this, &BikeSystem::cpuTask));
cpuEvent.delay(kCPUTaskDelay);
cpuEvent.period(kCPUTaskPeriod);
cpuEvent.post();
#endif
eventQueue.dispatch_forever();
#if !defined(MBED_TEST_MODE)
Event<void()> cpuEvent(&eventQueue, callback(this, &BikeSystem::cpuTask));
cpuEvent.delay(kCPUTaskDelay);
cpuEvent.period(kCPUTaskPeriod);
cpuEvent.post();
#endif
eventQueue.dispatch_forever();
}
void BikeSystem::stop() { core_util_atomic_store_bool(&_stopFlag, true); }
@ -195,8 +187,7 @@ void BikeSystem::gearTask() {
_currentGearSize = _gearDevice.getCurrentGearSize();
_taskLogger.logPeriodAndExecutionTime(
_timer, advembsof::TaskLogger::kGearTaskIndex, taskStartTime
);
_timer, advembsof::TaskLogger::kGearTaskIndex, taskStartTime);
}
void BikeSystem::speedDistanceTask() {
@ -207,12 +198,11 @@ void BikeSystem::speedDistanceTask() {
_speedometer.setCurrentRotationTime(pedalRotationTime);
_speedometer.setGearSize(_currentGearSize);
// no need to protect access to data members (single threaded)
_currentSpeed = _speedometer.getCurrentSpeed();
_currentSpeed = _speedometer.getCurrentSpeed();
_traveledDistance = _speedometer.getDistance();
_taskLogger.logPeriodAndExecutionTime(
_timer, advembsof::TaskLogger::kSpeedTaskIndex, taskStartTime
);
_timer, advembsof::TaskLogger::kSpeedTaskIndex, taskStartTime);
}
void BikeSystem::temperatureTask() {
@ -225,18 +215,15 @@ void BikeSystem::temperatureTask() {
tr_warn("Tick2 %" PRIu64, _timer.elapsed_time().count());
ThisThread::sleep_for(
std::chrono::duration_cast<std::chrono::milliseconds>(
kTemperatureTaskComputationTime - (_timer.elapsed_time() - taskStartTime)
)
);
ThisThread::sleep_for(std::chrono::duration_cast<std::chrono::milliseconds>(
kTemperatureTaskComputationTime - (_timer.elapsed_time() - taskStartTime)));
// simulate task computation by waiting for the required task computation time
// std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// while (elapsedTime < kTemperatureTaskComputationTime) {
// elapsedTime = _timer.elapsed_time() - taskStartTime;
// }
// std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// while (elapsedTime < kTemperatureTaskComputationTime) {
// elapsedTime = _timer.elapsed_time() - taskStartTime;
// }
_taskLogger.logPeriodAndExecutionTime(
_timer, advembsof::TaskLogger::kTemperatureTaskIndex, taskStartTime);
@ -263,18 +250,15 @@ void BikeSystem::displayTask1() {
_displayDevice.displaySpeed(_currentSpeed);
_displayDevice.displayDistance(_traveledDistance);
ThisThread::sleep_for(
std::chrono::duration_cast<std::chrono::milliseconds>(
kDisplayTask1ComputationTime - (_timer.elapsed_time() - taskStartTime)
)
);
ThisThread::sleep_for(std::chrono::duration_cast<std::chrono::milliseconds>(
kDisplayTask1ComputationTime - (_timer.elapsed_time() - taskStartTime)));
// simulate task computation by waiting for the required task computation time
// std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// while (elapsedTime < kDisplayTask1ComputationTime) {
// elapsedTime = _timer.elapsed_time() - taskStartTime;
// }
// std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// while (elapsedTime < kDisplayTask1ComputationTime) {
// elapsedTime = _timer.elapsed_time() - taskStartTime;
// }
_taskLogger.logPeriodAndExecutionTime(
_timer, advembsof::TaskLogger::kDisplayTask1Index, taskStartTime);
@ -285,24 +269,19 @@ void BikeSystem::displayTask2() {
_displayDevice.displayTemperature(_currentTemperature);
ThisThread::sleep_for(
std::chrono::duration_cast<std::chrono::milliseconds>(
kDisplayTask2ComputationTime - (_timer.elapsed_time() - taskStartTime)
)
);
ThisThread::sleep_for(std::chrono::duration_cast<std::chrono::milliseconds>(
kDisplayTask2ComputationTime - (_timer.elapsed_time() - taskStartTime)));
// simulate task computation by waiting for the required task computation time
// std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// while (elapsedTime < kDisplayTask2ComputationTime) {
// elapsedTime = _timer.elapsed_time() - taskStartTime;
// }
// std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// while (elapsedTime < kDisplayTask2ComputationTime) {
// elapsedTime = _timer.elapsed_time() - taskStartTime;
// }
_taskLogger.logPeriodAndExecutionTime(
_timer, advembsof::TaskLogger::kDisplayTask2Index, taskStartTime);
}
void BikeSystem::cpuTask() {
_cpuLogger.printStats();
}
void BikeSystem::cpuTask() { _cpuLogger.printStats(); }
} // namespace static_scheduling
} // namespace static_scheduling

View File

@ -25,9 +25,9 @@
#pragma once
// from advembsof
#include "cpu_logger.hpp"
#include "display_device.hpp"
#include "task_logger.hpp"
#include "cpu_logger.hpp"
// from common
#include "sensor_device.hpp"
@ -79,12 +79,12 @@ class BikeSystem {
Timer _timer;
// data member that represents the device for manipulating the gear
GearDevice _gearDevice;
uint8_t _currentGear = bike_computer::kMinGear;
uint8_t _currentGear = bike_computer::kMinGear;
uint8_t _currentGearSize = bike_computer::kMinGearSize;
// data member that represents the device for manipulating the pedal rotation
// speed/time
PedalDevice _pedalDevice;
float _currentSpeed = 0.0f;
float _currentSpeed = 0.0f;
float _traveledDistance = 0.0f;
// data member that represents the device used for resetting
ResetDevice _resetDevice;
@ -103,4 +103,4 @@ class BikeSystem {
advembsof::CPULogger _cpuLogger;
};
} // namespace static_scheduling
} // namespace static_scheduling

View File

@ -80,4 +80,4 @@ uint8_t GearDevice::getCurrentGearSize() const {
return bike_computer::kMaxGearSize - _currentGear;
}
} // namespace static_scheduling
} // namespace static_scheduling

View File

@ -47,4 +47,4 @@ class GearDevice {
Timer& _timer;
};
} // namespace static_scheduling
} // namespace static_scheduling

View File

@ -1,12 +1,25 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file pedal_device.cpp
* @author Rémi Heredero <remi@heredero.ch>
* @author Yann Sierro <yannsierro.pro@gmail.com>
*
* @brief Pedal Device implementation (static scheduling)
* @date 2024-11-09
* @version 0.1.0
****************************************************************************/
* @file pedal_device.cpp
* @author Rémi Heredero <remi@heredero.ch>
* @author Yann Sierro <yannsierro.pro@gmail.com>
*
* @brief Pedal Device implementation (static scheduling)
* @date 2024-11-09
* @version 0.1.0
****************************************************************************/
#include "pedal_device.hpp"
@ -22,51 +35,50 @@
namespace static_scheduling {
static constexpr std::chrono::microseconds kTaskRunTime = 200000us;
static constexpr std::chrono::microseconds kTaskRunTime = 200000us;
PedalDevice::PedalDevice(Timer& timer) : _timer(timer) {}
PedalDevice::PedalDevice(Timer& timer) : _timer(timer) {}
std::chrono::milliseconds PedalDevice::getCurrentRotationTime() {
std::chrono::microseconds initialTime = _timer.elapsed_time();
std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// we bound the change to one increment/decrement per call
bool hasChanged = false;
while (elapsedTime < kTaskRunTime) {
if (!hasChanged) {
disco::Joystick::State joystickState =
disco::Joystick::getInstance().getState();
std::chrono::milliseconds PedalDevice::getCurrentRotationTime() {
// TODO
std::chrono::microseconds initialTime = _timer.elapsed_time();
std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// we bound the change to one increment/decrement per call
bool hasChanged = false;
while (elapsedTime < kTaskRunTime) {
if (!hasChanged) {
disco::Joystick::State joystickState = disco::Joystick::getInstance().getState();
switch (joystickState) {
case disco::Joystick::State::LeftPressed:
if (_pedalRotationTime < bike_computer::kMaxPedalRotationTime) {
decreaseRotationSpeed();
hasChanged = true;
}
break;
switch (joystickState) {
case disco::Joystick::State::LeftPressed:
if (_pedalRotationTime < bike_computer::kMaxPedalRotationTime) {
decreaseRotationSpeed();
hasChanged = true;
}
break;
case disco::Joystick::State::DownPressed:
if (_pedalRotationTime > bike_computer::kMinPedalRotationTime) {
decreaseRotationSpeed();
hasChanged = true;
}
break;
case disco::Joystick::State::DownPressed:
if (_pedalRotationTime > bike_computer::kMinPedalRotationTime) {
decreaseRotationSpeed();
hasChanged = true;
}
break;
default:
break;
}
}
elapsedTime = _timer.elapsed_time() - initialTime;
}
return _pedalRotationTime;
default:
break;
}
}
elapsedTime = _timer.elapsed_time() - initialTime;
}
void PedalDevice::increaseRotationSpeed() {
_pedalRotationTime -= bike_computer::kDeltaPedalRotationTime;
}
void PedalDevice::decreaseRotationSpeed() {
_pedalRotationTime += bike_computer::kDeltaPedalRotationTime;
}
return _pedalRotationTime;
}
void PedalDevice::increaseRotationSpeed() {
_pedalRotationTime -= bike_computer::kDeltaPedalRotationTime;
}
void PedalDevice::decreaseRotationSpeed() {
_pedalRotationTime += bike_computer::kDeltaPedalRotationTime;
}
} // namespace static_scheduling

View File

@ -51,4 +51,4 @@ class PedalDevice {
Timer& _timer;
};
} // namespace static_scheduling
} // namespace static_scheduling

View File

@ -1,12 +1,26 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file reset_device.cpp
* @author Rémi Heredero <remi@heredero.ch>
* @author Yann Sierro <yannsierro.pro@gmail.com>
*
* @brief Reset Device implementation (static scheduling)
* @date 2024-11-12
* @version 0.1.0
****************************************************************************/
* @file reset_device.cpp
* @author Rémi Heredero <remi@heredero.ch>
* @author Yann Sierro <yannsierro.pro@gmail.com>
*
* @brief Reset Device implementation (static scheduling)
* @date 2024-11-12
* @version 0.1.0
****************************************************************************/
#include "reset_device.hpp"
@ -21,43 +35,35 @@
static constexpr uint8_t kPolarityPressed = 1;
#endif
#if MBED_CONF_MBED_TRACE_ENABLE
#define TRACE_GROUP "ResetDevice"
#endif // MBED_CONF_MBED_TRACE_ENABLE
namespace static_scheduling {
static constexpr std::chrono::microseconds kTaskRunTime = 100000us;
static constexpr std::chrono::microseconds kTaskRunTime = 100000us;
ResetDevice::ResetDevice(Timer& timer) : _timer(timer), _resetButton(PUSH_BUTTON) {
_resetButton.rise(callback(this, &ResetDevice::onRise));
}
ResetDevice::ResetDevice(Timer& timer) : _timer(timer), _resetButton(PUSH_BUTTON) {
_resetButton.rise(callback(this, &ResetDevice::onRise));
}
bool ResetDevice::checkReset() {
std::chrono::microseconds initialTime = _timer.elapsed_time();
std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// we bound the change to one increment/decrement per call
bool isPressed = false;
while (elapsedTime < kTaskRunTime) {
if(!isPressed) {
isPressed = _resetButton.read() == kPolarityPressed;
}
elapsedTime = _timer.elapsed_time() - initialTime;
}
return isPressed;
}
std::chrono::microseconds ResetDevice::getPressTime() {
return _pressTime;
bool ResetDevice::checkReset() {
std::chrono::microseconds initialTime = _timer.elapsed_time();
std::chrono::microseconds elapsedTime = std::chrono::microseconds::zero();
// we bound the change to one increment/decrement per call
bool isPressed = false;
while (elapsedTime < kTaskRunTime) {
if (!isPressed) {
isPressed = _resetButton.read() == kPolarityPressed;
}
elapsedTime = _timer.elapsed_time() - initialTime;
}
void ResetDevice::onRise() {
_pressTime = _timer.elapsed_time();
}
return isPressed;
}
std::chrono::microseconds ResetDevice::getPressTime() { return _pressTime; }
void ResetDevice::onRise() { _pressTime = _timer.elapsed_time(); }
}
} // namespace static_scheduling

View File

@ -53,4 +53,4 @@ class ResetDevice {
std::chrono::microseconds _pressTime;
};
} // namespace static_scheduling
} // namespace static_scheduling