2024-12-30 13:58:25 +01:00

164 lines
5.7 KiB
C++

// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file main.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Bike computer test suite: scheduling
*
* @date 2023-08-26
* @version 0.1.0
***************************************************************************/
#include <chrono>
#include "greentea-client/test_env.h"
#include "mbed.h"
#include "static_scheduling/bike_system.hpp"
#include "static_scheduling_with_event/bike_system.hpp"
#include "task_logger.hpp"
#include "unity/unity.h"
#include "utest/utest.h"
namespace utest {
namespace v1 {
// test_bike_system handler function
static void test_bike_system() {
// create the BikeSystem instance
static_scheduling::BikeSystem bikeSystem;
// run the bike system in a separate thread
Thread thread;
thread.start(callback(&bikeSystem, &static_scheduling::BikeSystem::start));
// let the bike system run for 20 secs
ThisThread::sleep_for(20s);
// stop the bike system
bikeSystem.stop();
// check whether scheduling was correct
// Order is kGearTaskIndex, kSpeedTaskIndex, kTemperatureTaskIndex,
// kResetTaskIndex, kDisplayTask1Index, kDisplayTask2Index
constexpr std::chrono::microseconds taskComputationTimes[] = {
100000us, 200000us, 100000us, 100000us, 200000us, 100000us};
constexpr std::chrono::microseconds taskPeriods[] = {
800000us, 400000us, 1600000us, 800000us, 1600000us, 1600000us};
// allow for 2 msecs offset
uint64_t deltaUs = 3000;
for (uint8_t taskIndex = 0; taskIndex < advembsof::TaskLogger::kNbrOfTasks;
taskIndex++) {
TEST_ASSERT_UINT64_WITHIN(
deltaUs,
taskPeriods[taskIndex].count(),
bikeSystem.getTaskLogger().getPeriod(taskIndex).count());
TEST_ASSERT_UINT64_WITHIN(
deltaUs,
taskComputationTimes[taskIndex].count(),
bikeSystem.getTaskLogger().getComputationTime(taskIndex).count());
}
}
// test_bike_system_event_queue handler function
static void test_bike_system_event_queue() {
// create the BikeSystem instance
static_scheduling::BikeSystem bikeSystem;
// run the bike system in a separate thread
Thread thread;
thread.start(
callback(&bikeSystem, &static_scheduling::BikeSystem::startWithEventQueue));
// let the bike system run for 20 secs
ThisThread::sleep_for(20s);
// stop the bike system
bikeSystem.stop();
// check whether scheduling was correct
// Order is kGearTaskIndex, kSpeedTaskIndex, kTemperatureTaskIndex,
// kResetTaskIndex, kDisplayTask1Index, kDisplayTask2Index
// When we use the event queue, we do not check the computation time
constexpr std::chrono::microseconds taskPeriods[] = {
800000us, 400000us, 1600000us, 800000us, 1600000us, 1600000us};
// allow for 2 msecs offset (with EventQueue)
uint64_t deltaUs = 3000;
for (uint8_t taskIndex = 0; taskIndex < advembsof::TaskLogger::kNbrOfTasks;
taskIndex++) {
TEST_ASSERT_UINT64_WITHIN(
deltaUs,
taskPeriods[taskIndex].count(),
bikeSystem.getTaskLogger().getPeriod(taskIndex).count());
}
}
// test_bike_system_with_event handler function
static void test_bike_system_with_event() {
// create the BikeSystem instance
static_scheduling_with_event::BikeSystem bikeSystem;
// run the bike system in a separate thread
Thread thread;
thread.start(callback(&bikeSystem, &static_scheduling_with_event::BikeSystem::start));
// let the bike system run for 20 secs
ThisThread::sleep_for(20s);
// stop the bike system
bikeSystem.stop();
// check whether scheduling was correct
// Order is kGearTaskIndex, kSpeedTaskIndex, kTemperatureTaskIndex,
// kResetTaskIndex, kDisplayTask1Index, kDisplayTask2Index
// When we use event handling, we do not check the computation time
constexpr std::chrono::microseconds taskPeriods[] = {
800000us, 400000us, 1600000us, 800000us, 1600000us, 1600000us};
// allow for 2 msecs offset (with EventQueue)
uint64_t deltaUs = 3000;
for (uint8_t taskIndex = 0; taskIndex < advembsof::TaskLogger::kNbrOfTasks;
taskIndex++) {
TEST_ASSERT_UINT64_WITHIN(
deltaUs,
taskPeriods[taskIndex].count(),
bikeSystem.getTaskLogger().getPeriod(taskIndex).count());
}
}
static status_t greentea_setup(const size_t number_of_cases) {
// Here, we specify the timeout (60s) and the host test (a built-in host test
// or the name of our Python file)
GREENTEA_SETUP(180, "default_auto");
return greentea_test_setup_handler(number_of_cases);
}
// List of test cases in this file
static Case cases[] = {
Case("test bike system", test_bike_system),
Case("test bike system with event queue", test_bike_system_event_queue),
Case("test bike system with event handling", test_bike_system_with_event),
};
static Specification specification(greentea_setup, cases);
}; // namespace v1
}; // namespace utest
int main() { return !utest::v1::Harness::run(utest::v1::specification); }