BikeComputer/common/speedometer.cpp
2025-01-07 00:35:20 +01:00

154 lines
5.2 KiB
C++

// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file speedometer_device.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief WheelCounterDevice implementation (static scheduling)
*
* @date 2023-08-20
* @version 1.0.0
***************************************************************************/
#include "speedometer.hpp"
#include <chrono>
#include <cstddef>
#include <ratio>
#include "static_scheduling/gear_device.hpp"
// from disco_h747i/wrappers
#include "joystick.hpp"
#include "mbed_trace.h"
#if MBED_CONF_MBED_TRACE_ENABLE
#define TRACE_GROUP "Speedometer"
#endif // MBED_CONF_MBED_TRACE_ENABLE
namespace bike_computer {
Speedometer::Speedometer(Timer& timer) : _timer(timer) {
// update _lastTime
_lastTime = _timer.elapsed_time();
}
void Speedometer::setCurrentRotationTime(
const std::chrono::milliseconds& currentRotationTime) {
if (_pedalRotationTime != currentRotationTime) {
// compute distance before changing the rotation time
computeDistance();
// change pedal rotation time
_pedalRotationTime = currentRotationTime;
// compute speed with the new pedal rotation time
computeSpeed();
}
}
void Speedometer::setGearSize(uint8_t gearSize) {
if (_gearSize != gearSize) {
// compute distance before chaning the gear size
computeDistance();
// change gear size
_gearSize = gearSize;
// compute speed with the new gear size
computeSpeed();
}
}
float Speedometer::getCurrentSpeed() const { return _currentSpeed; }
float Speedometer::getDistance() {
// make sure to update the distance traveled
computeDistance();
return _totalDistance;
}
void Speedometer::reset() {
#if defined(MBED_TEST_MODE)
if (_cbOnReset != NULL) {
_cbOnReset();
}
#endif
this->_totalDistanceMutex.lock();
this->_totalDistance = 0.0f;
this->_totalDistanceMutex.unlock();
}
#if defined(MBED_TEST_MODE)
uint8_t Speedometer::getGearSize() const { return _gearSize; }
float Speedometer::getWheelCircumference() const { return kWheelCircumference; }
float Speedometer::getTraySize() const { return kTraySize; }
std::chrono::milliseconds Speedometer::getCurrentPedalRotationTime() const {
return _pedalRotationTime;
}
void Speedometer::setOnResetCallback(mbed::Callback<void()> cb) { _cbOnReset = cb; }
#endif // defined(MBED_TEST_MODE)
void Speedometer::computeSpeed() {
// For computing the speed given a rear gear (braquet), one must divide the size of
// the tray (plateau) by the size of the rear gear (pignon arrière), and then multiply
// the result by the circumference of the wheel. Example: tray = 50, rear gear = 15.
// Distance run with one pedal turn (wheel circumference = 2.10 m) = 50/15 * 2.1 m
// = 6.99m If you ride at 80 pedal turns / min, you run a distance of 6.99 * 80 / min
// ~= 560 m / min = 33.6 km/h
// Distance run with one pedal turn = tray size / rear gear size * circumference of
// the wheel
constexpr float ms_in_hour = static_cast<float>(3600 * 1000);
float pedal_rotation_per_hour =
ms_in_hour /
std::chrono::duration_cast<std::chrono::milliseconds>(_pedalRotationTime).count();
float gear_ratio =
static_cast<float>(kTraySize) / static_cast<float>(this->_gearSize);
float wheel_dist_km = static_cast<float>(this->kWheelCircumference) / 1000.0;
this->_currentSpeed = gear_ratio * wheel_dist_km * pedal_rotation_per_hour;
}
void Speedometer::computeDistance() {
// For computing the speed given a rear gear (braquet), one must divide the size of
// the tray (plateau) by the size of the rear gear (pignon arrière), and then multiply
// the result by the circumference of the wheel. Example: tray = 50, rear gear = 15.
// Distance run with one pedal turn (wheel circumference = 2.10 m) = 50/15 * 2.1 m
// = 6.99m If you ride at 80 pedal turns / min, you run a distance of 6.99 * 80 / min
// ~= 560 m / min = 33.6 km/h. We then multiply the speed by the time for getting the
// distance traveled.
Speedometer::computeSpeed();
// compute distance
const std::chrono::microseconds timeNow = _timer.elapsed_time();
const std::chrono::microseconds timeDiff = timeNow - _lastTime;
constexpr float ms_in_hour = static_cast<float>(3600 * 1000);
float traveled_dist = _currentSpeed * timeDiff.count() / (ms_in_hour * 1000.0 /*μs*/);
this->_totalDistanceMutex.lock();
this->_totalDistance += traveled_dist;
this->_totalDistanceMutex.unlock();
_lastTime = _timer.elapsed_time();
}
} // namespace bike_computer