7127 lines
227 KiB
C
7127 lines
227 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f7xx_hal_cryp.c
|
|
* @author MCD Application Team
|
|
* @brief CRYP HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Cryptography (CRYP) peripheral:
|
|
* + Initialization, de-initialization, set config and get config functions
|
|
* + DES/TDES, AES processing functions
|
|
* + DMA callback functions
|
|
* + CRYP IRQ handler management
|
|
* + Peripheral State functions
|
|
*
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
@verbatim
|
|
==============================================================================
|
|
##### How to use this driver #####
|
|
==============================================================================
|
|
[..]
|
|
The CRYP HAL driver can be used in CRYP or TinyAES IP as follows:
|
|
|
|
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
|
|
(##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()or __HAL_RCC_AES_CLK_ENABLE for TinyAES IP
|
|
(##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
|
|
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
|
|
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
|
|
(+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
|
|
(##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
|
|
(+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
|
|
(+++) Configure and enable two DMA streams one for managing data transfer from
|
|
memory to peripheral (input stream) and another stream for managing data
|
|
transfer from peripheral to memory (output stream)
|
|
(+++) Associate the initialized DMA handle to the CRYP DMA handle
|
|
using __HAL_LINKDMA()
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
|
interrupt on the two DMA Streams. The output stream should have higher
|
|
priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
|
|
|
|
(#)Initialize the CRYP according to the specified parameters :
|
|
(##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
|
|
(##) The key size: 128, 192 or 256.
|
|
(##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
|
|
(##) The initialization vector (counter). It is not used in ECB mode.
|
|
(##) The key buffer used for encryption/decryption.
|
|
(##) The Header used only in AES GCM and CCM Algorithm for authentication.
|
|
(##) The HeaderSize The size of header buffer in word.
|
|
(##) The B0 block is the first authentication block used only in AES CCM mode.
|
|
|
|
(#)Three processing (encryption/decryption) functions are available:
|
|
(##) Polling mode: encryption and decryption APIs are blocking functions
|
|
i.e. they process the data and wait till the processing is finished,
|
|
e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
|
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
|
|
i.e. they process the data under interrupt,
|
|
e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
|
(##) DMA mode: encryption and decryption APIs are not blocking functions
|
|
i.e. the data transfer is ensured by DMA,
|
|
e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
|
|
|
(#)When the processing function is called at first time after HAL_CRYP_Init()
|
|
the CRYP peripheral is configured and processes the buffer in input.
|
|
At second call, no need to Initialize the CRYP, user have to get current configuration via
|
|
HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
|
|
new parametres, finally user can start encryption/decryption.
|
|
|
|
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
|
|
|
|
(#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt()
|
|
without having to configure again the Key or the Initialization Vector between each API call,
|
|
the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE.
|
|
Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA()
|
|
or HAL_CRYP_Decrypt_DMA().
|
|
|
|
[..]
|
|
The cryptographic processor supports following standards:
|
|
(#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 IP:
|
|
(##)64-bit data block processing
|
|
(##) chaining modes supported :
|
|
(+++) Electronic Code Book(ECB)
|
|
(+++) Cipher Block Chaining (CBC)
|
|
(##) keys length supported :64-bit, 128-bit and 192-bit.
|
|
(#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES IP:
|
|
(##)128-bit data block processing
|
|
(##) chaining modes supported :
|
|
(+++) Electronic Code Book(ECB)
|
|
(+++) Cipher Block Chaining (CBC)
|
|
(+++) Counter mode (CTR)
|
|
(+++) Galois/counter mode (GCM/GMAC)
|
|
(+++) Counter with Cipher Block Chaining-Message(CCM)
|
|
(##) keys length Supported :
|
|
(+++) for CRYP1 IP: 128-bit, 192-bit and 256-bit.
|
|
(+++) for TinyAES IP: 128-bit and 256-bit
|
|
|
|
[..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 IP:
|
|
(#) Algorithm supported :
|
|
(##) Galois/counter mode (GCM)
|
|
(##) Galois message authentication code (GMAC) :is exactly the same as
|
|
GCM algorithm composed only by an header.
|
|
(#) Four phases are performed in GCM :
|
|
(##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
|
|
(##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
|
|
computation only.
|
|
(##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
|
|
encryption + data XORing. It works in a similar way for ciphertext (C).
|
|
(##) Final phase: IP generates the authenticated tag (T) using the last block of data.
|
|
(#) structure of message construction in GCM is defined as below :
|
|
(##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
|
|
(##) The authenticated header A (also knows as Additional Authentication Data AAD)
|
|
this part of the message is only authenticated, not encrypted.
|
|
(##) The plaintext message P is both authenticated and encrypted as ciphertext.
|
|
GCM standard specifies that ciphertext has same bit length as the plaintext.
|
|
(##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
|
|
(on 64 bits)
|
|
|
|
[..] This section describe The AES Counter with Cipher Block Chaining-Message
|
|
Authentication Code (CCM) supported by both CRYP1 IP:
|
|
(#) Specific parameters for CCM :
|
|
|
|
(##) B0 block : According to NIST Special Publication 800-38C,
|
|
The first block B0 is formatted as follows, where l(m) is encoded in
|
|
most-significant-byte first order(see below table 3)
|
|
|
|
(+++) Q: a bit string representation of the octet length of P (plaintext)
|
|
(+++) q The octet length of the binary representation of the octet length of the payload
|
|
(+++) A nonce (N), n The octet length of the where n+q=15.
|
|
(+++) Flags: most significant octet containing four flags for control information,
|
|
(+++) t The octet length of the MAC.
|
|
(##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
|
|
the associated data length expressed in bytes (a) defined as below:
|
|
(+++) If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
|
|
(+++) If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
|
|
(+++) If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
|
|
(##) CTRx block : control blocks
|
|
(+++) Generation of CTR1 from first block B0 information :
|
|
equal to B0 with first 5 bits zeroed and most significant bits storing octet
|
|
length of P also zeroed, then incremented by one ( see below Table 4)
|
|
(+++) Generation of CTR0: same as CTR1 with bit[0] set to zero.
|
|
|
|
(#) Four phases are performed in CCM for CRYP1 IP:
|
|
(##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
|
|
(##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
|
|
computation only.
|
|
(##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
|
|
encryption + data XORing. It works in a similar way for ciphertext (C).
|
|
(##) Final phase: IP generates the authenticated tag (T) using the last block of data.
|
|
|
|
*** Callback registration ***
|
|
=============================================
|
|
|
|
The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
|
|
allows the user to configure dynamically the driver callbacks.
|
|
Use Functions HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
|
|
to register an interrupt callback.
|
|
|
|
Function HAL_CRYP_RegisterCallback() allows to register following callbacks:
|
|
(+) InCpltCallback : Input FIFO transfer completed callback.
|
|
(+) OutCpltCallback : Output FIFO transfer completed callback.
|
|
(+) ErrorCallback : callback for error detection.
|
|
(+) MspInitCallback : CRYP MspInit.
|
|
(+) MspDeInitCallback : CRYP MspDeInit.
|
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
|
and a pointer to the user callback function.
|
|
|
|
Use function HAL_CRYP_UnRegisterCallback() to reset a callback to the default
|
|
weak function.
|
|
HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
|
and the Callback ID.
|
|
This function allows to reset following callbacks:
|
|
(+) InCpltCallback : Input FIFO transfer completed callback.
|
|
(+) OutCpltCallback : Output FIFO transfer completed callback.
|
|
(+) ErrorCallback : callback for error detection.
|
|
(+) MspInitCallback : CRYP MspInit.
|
|
(+) MspDeInitCallback : CRYP MspDeInit.
|
|
|
|
By default, after the HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
|
|
all callbacks are set to the corresponding weak functions :
|
|
examples HAL_CRYP_InCpltCallback() , HAL_CRYP_OutCpltCallback().
|
|
Exception done for MspInit and MspDeInit functions that are
|
|
reset to the legacy weak function in the HAL_CRYP_Init()/ HAL_CRYP_DeInit() only when
|
|
these callbacks are null (not registered beforehand).
|
|
if not, MspInit or MspDeInit are not null, the HAL_CRYP_Init() / HAL_CRYP_DeInit()
|
|
keep and use the user MspInit/MspDeInit functions (registered beforehand)
|
|
|
|
Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
|
|
Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
|
|
in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
|
|
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
|
In that case first register the MspInit/MspDeInit user callbacks
|
|
using HAL_CRYP_RegisterCallback() before calling HAL_CRYP_DeInit()
|
|
or HAL_CRYP_Init() function.
|
|
|
|
When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
|
|
not defined, the callback registration feature is not available and all callbacks
|
|
are set to the corresponding weak functions.
|
|
|
|
Table 1. Initial Counter Block (ICB)
|
|
+-------------------------------------------------------+
|
|
| Initialization vector (IV) | Counter |
|
|
|----------------|----------------|-----------|---------|
|
|
127 95 63 31 0
|
|
|
|
|
|
Bit Number Register Contents
|
|
---------- --------------- -----------
|
|
127 ...96 CRYP_IV1R[31:0] ICB[127:96]
|
|
95 ...64 CRYP_IV1L[31:0] B0[95:64]
|
|
63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
|
|
31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
|
|
|
|
Table 2. GCM last block definition
|
|
|
|
+-------------------------------------------------------------------+
|
|
| Bit[0] | Bit[32] | Bit[64] | Bit[96] |
|
|
|-----------|--------------------|-----------|----------------------|
|
|
| 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
|
|
|-----------|--------------------|-----------|----------------------|
|
|
|
|
Table 3. B0 block
|
|
Octet Number Contents
|
|
------------ ---------
|
|
0 Flags
|
|
1 ... 15-q Nonce N
|
|
16-q ... 15 Q
|
|
|
|
the Flags field is formatted as follows:
|
|
|
|
Bit Number Contents
|
|
---------- ----------------------
|
|
7 Reserved (always zero)
|
|
6 Adata
|
|
5 ... 3 (t-2)/2
|
|
2 ... 0 [q-1]3
|
|
|
|
Table 4. CTRx block
|
|
Bit Number Register Contents
|
|
---------- --------------- -----------
|
|
127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
|
|
bit 0 that is set to 1
|
|
95 ...64 CRYP_IV1L[31:0] B0[95:64]
|
|
63 ... 32 CRYP_IV0R[31:0] B0[63:32]
|
|
31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f7xx_hal.h"
|
|
|
|
/** @addtogroup STM32F7xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
#if defined (AES) || defined (CRYP)
|
|
|
|
/** @defgroup CRYP CRYP
|
|
* @brief CRYP HAL module driver.
|
|
* @{
|
|
*/
|
|
|
|
|
|
#ifdef HAL_CRYP_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Defines
|
|
* @{
|
|
*/
|
|
#define CRYP_TIMEOUT_KEYPREPARATION 82U /*The latency of key preparation operation is 82 clock cycles.*/
|
|
#define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey is 299 clock cycles.*/
|
|
#define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
|
|
|
|
#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
|
|
#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
|
|
|
|
#if defined(AES)
|
|
#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
|
|
#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
|
|
#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
|
|
#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
|
|
#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
|
|
#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
|
|
#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
|
|
#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
|
|
#else /* CRYP */
|
|
#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
|
|
#define CRYP_PHASE_HEADER CRYP_CR_GCM_CCMPH_0 /*!< GCM/GMAC or CCM header phase */
|
|
#define CRYP_PHASE_PAYLOAD CRYP_CR_GCM_CCMPH_1 /*!< GCM(/CCM) payload phase */
|
|
#define CRYP_PHASE_FINAL CRYP_CR_GCM_CCMPH /*!< GCM/GMAC or CCM final phase */
|
|
#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode */
|
|
#define CRYP_OPERATINGMODE_DECRYPT CRYP_CR_ALGODIR /*!< Decryption */
|
|
#endif /* End CRYP or AES */
|
|
|
|
/* CTR1 information to use in CCM algorithm */
|
|
#define CRYP_CCM_CTR1_0 0x07FFFFFFU
|
|
#define CRYP_CCM_CTR1_1 0xFFFFFF00U
|
|
#define CRYP_CCM_CTR1_2 0x00000001U
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Macros
|
|
* @{
|
|
*/
|
|
|
|
#if defined(CRYP)
|
|
|
|
#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~CRYP_CR_GCM_CCMPH);\
|
|
(__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
|
|
}while(0)
|
|
|
|
#define HAL_CRYP_FIFO_FLUSH(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRYP_CR_FFLUSH)
|
|
|
|
#else /*AES*/
|
|
#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~AES_CR_GCMPH);\
|
|
(__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
|
|
}while(0)
|
|
#endif /* End AES or CRYP*/
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private struct -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Functions_prototypes
|
|
* @{
|
|
*/
|
|
|
|
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
|
|
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
|
|
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
|
|
static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
|
|
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
|
|
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
|
|
static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
|
|
|
|
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
|
|
#if defined (CRYP)
|
|
static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp);
|
|
|
|
static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
|
|
static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
#else /*AES*/
|
|
static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
#endif /* End CRYP or AES */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions ---------------------------------------------------------*/
|
|
|
|
/** @defgroup CRYP_Exported_Functions CRYP Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
|
|
/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions.
|
|
*
|
|
@verbatim
|
|
========================================================================================
|
|
##### Initialization, de-initialization and Set and Get configuration functions #####
|
|
========================================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Initialize the CRYP
|
|
(+) DeInitialize the CRYP
|
|
(+) Initialize the CRYP MSP
|
|
(+) DeInitialize the CRYP MSP
|
|
(+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
|
|
Parameters which are configured in This section are :
|
|
(+) Key size
|
|
(+) Data Type : 32,16, 8 or 1bit
|
|
(+) AlgoMode :
|
|
- for CRYP1 IP :
|
|
ECB and CBC in DES/TDES Standard
|
|
ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
|
|
- for TinyAES2 IP, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
|
|
(+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Initializes the CRYP according to the specified
|
|
* parameters in the CRYP_ConfigTypeDef and creates the associated handle.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if (hcryp == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check parameters */
|
|
assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
|
|
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
|
|
assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
|
|
assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip));
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hcryp->Lock = HAL_UNLOCKED;
|
|
|
|
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
|
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
|
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
|
|
if (hcryp->MspInitCallback == NULL)
|
|
{
|
|
hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
hcryp->MspInitCallback(hcryp);
|
|
}
|
|
#else
|
|
if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hcryp->Lock = HAL_UNLOCKED;
|
|
|
|
/* Init the low level hardware */
|
|
HAL_CRYP_MspInit(hcryp);
|
|
}
|
|
#endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
|
|
|
|
/* Set the key size(This bit field is don't care in the DES or TDES modes) data type and Algorithm */
|
|
#if defined (CRYP)
|
|
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE | CRYP_CR_KEYSIZE | CRYP_CR_ALGOMODE,
|
|
hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
|
|
|
#else /*AES*/
|
|
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
|
|
hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
|
|
|
#endif /* End AES or CRYP*/
|
|
|
|
/* Reset Error Code field */
|
|
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Set the default CRYP phase */
|
|
hcryp->Phase = CRYP_PHASE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief De-Initializes the CRYP peripheral.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if (hcryp == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set the default CRYP phase */
|
|
hcryp->Phase = CRYP_PHASE_READY;
|
|
|
|
/* Reset CrypInCount and CrypOutCount */
|
|
hcryp->CrypInCount = 0;
|
|
hcryp->CrypOutCount = 0;
|
|
hcryp->CrypHeaderCount = 0;
|
|
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
|
|
if (hcryp->MspDeInitCallback == NULL)
|
|
{
|
|
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
|
|
}
|
|
/* DeInit the low level hardware */
|
|
hcryp->MspDeInitCallback(hcryp);
|
|
|
|
#else
|
|
|
|
/* DeInit the low level hardware: CLOCK, NVIC.*/
|
|
HAL_CRYP_MspDeInit(hcryp);
|
|
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_RESET;
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the CRYP according to the specified
|
|
* parameters in the CRYP_ConfigTypeDef
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
|
* @param pConf: pointer to a CRYP_ConfigTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if ((hcryp == NULL) || (pConf == NULL))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check parameters */
|
|
assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
|
|
assert_param(IS_CRYP_DATATYPE(pConf->DataType));
|
|
assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Set CRYP parameters */
|
|
hcryp->Init.DataType = pConf->DataType;
|
|
hcryp->Init.pKey = pConf->pKey;
|
|
hcryp->Init.Algorithm = pConf->Algorithm;
|
|
hcryp->Init.KeySize = pConf->KeySize;
|
|
hcryp->Init.pInitVect = pConf->pInitVect;
|
|
hcryp->Init.Header = pConf->Header;
|
|
hcryp->Init.HeaderSize = pConf->HeaderSize;
|
|
hcryp->Init.B0 = pConf->B0;
|
|
hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
|
|
hcryp->Init.KeyIVConfigSkip = pConf->KeyIVConfigSkip;
|
|
hcryp->Init.HeaderWidthUnit = pConf->HeaderWidthUnit;
|
|
|
|
/* Set the key size(This bit field is don't care in the DES or TDES modes) data type, AlgoMode and operating mode*/
|
|
#if defined (CRYP)
|
|
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE | CRYP_CR_KEYSIZE | CRYP_CR_ALGOMODE,
|
|
hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
|
|
|
#else /*AES*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
|
|
hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
|
|
|
/*clear error flags*/
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR);
|
|
|
|
#endif /* End AES or CRYP */
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Reset Error Code field */
|
|
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Set the default CRYP phase */
|
|
hcryp->Phase = CRYP_PHASE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get CRYP Configuration parameters in associated handle.
|
|
* @param pConf: pointer to a CRYP_ConfigTypeDef structure
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if ((hcryp == NULL) || (pConf == NULL))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Get CRYP parameters */
|
|
pConf->DataType = hcryp->Init.DataType;
|
|
pConf->pKey = hcryp->Init.pKey;
|
|
pConf->Algorithm = hcryp->Init.Algorithm;
|
|
pConf->KeySize = hcryp->Init.KeySize ;
|
|
pConf->pInitVect = hcryp->Init.pInitVect;
|
|
pConf->Header = hcryp->Init.Header ;
|
|
pConf->HeaderSize = hcryp->Init.HeaderSize;
|
|
pConf->B0 = hcryp->Init.B0;
|
|
pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
|
|
pConf->KeyIVConfigSkip = hcryp->Init.KeyIVConfigSkip;
|
|
pConf->HeaderWidthUnit = hcryp->Init.HeaderWidthUnit;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/**
|
|
* @brief Initializes the CRYP MSP.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_CRYP_MspInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitializes CRYP MSP.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_CRYP_MspDeInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/**
|
|
* @brief Register a User CRYP Callback
|
|
* To be used instead of the weak predefined callback
|
|
* @param hcryp cryp handle
|
|
* @param CallbackID ID of the callback to be registered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
|
|
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
|
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
|
* @param pCallback pointer to the Callback function
|
|
* @retval status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID,
|
|
pCRYP_CallbackTypeDef pCallback)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (pCallback == NULL)
|
|
{
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
|
hcryp->InCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
|
hcryp->OutCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_ERROR_CB_ID :
|
|
hcryp->ErrorCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Unregister an CRYP Callback
|
|
* CRYP callback is redirected to the weak predefined callback
|
|
* @param hcryp cryp handle
|
|
* @param CallbackID ID of the callback to be unregistered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
|
|
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
|
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
|
* @retval status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
|
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
|
break;
|
|
|
|
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
|
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
|
break;
|
|
|
|
case HAL_CRYP_ERROR_CB_ID :
|
|
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
break;
|
|
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return status;
|
|
}
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup CRYP_Exported_Functions_Group2 Encrypt Decrypt functions
|
|
* @brief processing functions.
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### Encrypt Decrypt functions #####
|
|
==============================================================================
|
|
[..] This section provides API allowing to Encrypt/Decrypt Data following
|
|
Standard DES/TDES or AES, and Algorithm configured by the user:
|
|
(+) Standard DES/TDES only supported by CRYP1 IP, below list of Algorithm supported :
|
|
- Electronic Code Book(ECB)
|
|
- Cipher Block Chaining (CBC)
|
|
(+) Standard AES supported by CRYP1 IP & TinyAES, list of Algorithm supported:
|
|
- Electronic Code Book(ECB)
|
|
- Cipher Block Chaining (CBC)
|
|
- Counter mode (CTR)
|
|
- Cipher Block Chaining (CBC)
|
|
- Counter mode (CTR)
|
|
- Galois/counter mode (GCM)
|
|
- Counter with Cipher Block Chaining-Message(CCM)
|
|
[..] Three processing functions are available:
|
|
(+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
|
(+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
|
(+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Encryption mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input: Pointer to the input buffer (plaintext)
|
|
* @param Size: Length of the plaintext buffer in word.
|
|
* @param Output: Pointer to the output buffer(ciphertext)
|
|
* @param Timeout: Specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
|
|
uint32_t Timeout)
|
|
{
|
|
uint32_t algo;
|
|
HAL_StatusTypeDef status;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
/* Set Encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_DES_ECB:
|
|
case CRYP_DES_CBC:
|
|
case CRYP_TDES_ECB:
|
|
case CRYP_TDES_CBC:
|
|
|
|
/*Set Key */
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
}
|
|
|
|
/*Set Initialization Vector (IV)*/
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
}
|
|
|
|
/* Flush FIFO */
|
|
HAL_CRYP_FIFO_FLUSH(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Statrt DES/TDES encryption process */
|
|
status = CRYP_TDES_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES encryption */
|
|
status = CRYP_AES_Encrypt(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_GCM:
|
|
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process(hcryp, Timeout);
|
|
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
#else /*AES*/
|
|
|
|
/* Set the operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES encryption */
|
|
status = CRYP_AES_Encrypt(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
#endif /*end AES or CRYP */
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input: Pointer to the input buffer (ciphertext )
|
|
* @param Size: Length of the plaintext buffer in word.
|
|
* @param Output: Pointer to the output buffer(plaintext)
|
|
* @param Timeout: Specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
|
|
uint32_t Timeout)
|
|
{
|
|
HAL_StatusTypeDef status;
|
|
uint32_t algo;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
|
|
/* Set Decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_DES_ECB:
|
|
case CRYP_DES_CBC:
|
|
case CRYP_TDES_ECB:
|
|
case CRYP_TDES_CBC:
|
|
|
|
/*Set Key */
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
}
|
|
|
|
/*Set Initialization Vector (IV)*/
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
}
|
|
|
|
/* Flush FIFO */
|
|
HAL_CRYP_FIFO_FLUSH(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Start DES/TDES decryption process */
|
|
status = CRYP_TDES_Process(hcryp, Timeout);
|
|
|
|
break;
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_GCM:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
#else /*AES*/
|
|
|
|
/* Set Decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption in interrupt mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input: Pointer to the input buffer (plaintext)
|
|
* @param Size: Length of the plaintext buffer in word
|
|
* @param Output: Pointer to the output buffer(ciphertext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
uint32_t algo;
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
|
|
/* Set encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = (hcryp->Instance->CR & CRYP_CR_ALGOMODE);
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_DES_ECB:
|
|
case CRYP_DES_CBC:
|
|
case CRYP_TDES_ECB:
|
|
case CRYP_TDES_CBC:
|
|
|
|
/*Set Key */
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
}
|
|
/* Set the Initialization Vector*/
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
}
|
|
|
|
/* Flush FIFO */
|
|
HAL_CRYP_FIFO_FLUSH(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Enable CRYP to start DES/TDES process*/
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
status = CRYP_AES_Encrypt_IT(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM:
|
|
|
|
status = CRYP_AESGCM_Process_IT(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
status = CRYP_AESCCM_Process_IT(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
#else /* AES */
|
|
|
|
/* Set encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES encryption */
|
|
status = CRYP_AES_Encrypt_IT(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process_IT(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process_IT(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
#endif /*end AES or CRYP*/
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption in itnterrupt mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input: Pointer to the input buffer (ciphertext )
|
|
* @param Size: Length of the plaintext buffer in word.
|
|
* @param Output: Pointer to the output buffer(plaintext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
uint32_t algo;
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
|
|
/* Set decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_DES_ECB:
|
|
case CRYP_DES_CBC:
|
|
case CRYP_TDES_ECB:
|
|
case CRYP_TDES_CBC:
|
|
|
|
/*Set Key */
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
}
|
|
|
|
/* Set the Initialization Vector*/
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
}
|
|
/* Flush FIFO */
|
|
HAL_CRYP_FIFO_FLUSH(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Enable CRYP and start DES/TDES process*/
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
break;
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt_IT(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process_IT(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCMdecryption */
|
|
status = CRYP_AESCCM_Process_IT(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
#else /*AES*/
|
|
|
|
/* Set decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt_IT(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process_IT(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process_IT(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption in DMA mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input: Pointer to the input buffer (plaintext)
|
|
* @param Size: Length of the plaintext buffer in word.
|
|
* @param Output: Pointer to the output buffer(ciphertext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
uint32_t algo;
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
|
|
/* Set encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_DES_ECB:
|
|
case CRYP_DES_CBC:
|
|
case CRYP_TDES_ECB:
|
|
case CRYP_TDES_CBC:
|
|
|
|
/*Set Key */
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
}
|
|
|
|
/* Set the Initialization Vector*/
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
}
|
|
|
|
/* Flush FIFO */
|
|
HAL_CRYP_FIFO_FLUSH(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Start DMA process transfer for DES/TDES */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size) / 4U),
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
break;
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the Initialization Vector*/
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Start DMA process transfer for AES */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size) / 4U),
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
break;
|
|
|
|
case CRYP_AES_GCM:
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process_DMA(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
#else /*AES*/
|
|
/* Set encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the Initialization Vector*/
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Start DMA process transfer for AES */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process_DMA(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption in DMA mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input: Pointer to the input buffer (ciphertext )
|
|
* @param Size: Length of the plaintext buffer in word
|
|
* @param Output: Pointer to the output buffer(plaintext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
uint32_t algo;
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
|
|
/* Set decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
|
|
|
switch (algo)
|
|
{
|
|
case CRYP_DES_ECB:
|
|
case CRYP_DES_CBC:
|
|
case CRYP_TDES_ECB:
|
|
case CRYP_TDES_CBC:
|
|
|
|
/*Set Key */
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
}
|
|
|
|
/* Set the Initialization Vector*/
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
}
|
|
|
|
/* Flush FIFO */
|
|
HAL_CRYP_FIFO_FLUSH(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Start DMA process transfer for DES/TDES */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size) / 4U),
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
break;
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt_DMA(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM:
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process_DMA(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
#else /*AES*/
|
|
|
|
/* Set decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt_DMA(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process_DMA(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
|
|
* @brief CRYP IRQ handler.
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### CRYP IRQ handler management #####
|
|
==============================================================================
|
|
[..] This section provides CRYP IRQ handler and callback functions.
|
|
(+) HAL_CRYP_IRQHandler CRYP interrupt request
|
|
(+) HAL_CRYP_InCpltCallback input data transfer complete callback
|
|
(+) HAL_CRYP_OutCpltCallback output data transfer complete callback
|
|
(+) HAL_CRYP_ErrorCallback CRYP error callback
|
|
(+) HAL_CRYP_GetState return the CRYP state
|
|
(+) HAL_CRYP_GetError return the CRYP error code
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief This function handles cryptographic interrupt request.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval None
|
|
*/
|
|
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
|
|
#if defined (CRYP)
|
|
|
|
uint32_t itstatus = hcryp->Instance->MISR;
|
|
|
|
if ((itstatus & (CRYP_IT_INI | CRYP_IT_OUTI)) != 0U)
|
|
{
|
|
if ((hcryp->Init.Algorithm == CRYP_DES_ECB) || (hcryp->Init.Algorithm == CRYP_DES_CBC)
|
|
|| (hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
|
{
|
|
CRYP_TDES_IT(hcryp); /* DES or TDES*/
|
|
}
|
|
else if ((hcryp->Init.Algorithm == CRYP_AES_ECB) || (hcryp->Init.Algorithm == CRYP_AES_CBC)
|
|
|| (hcryp->Init.Algorithm == CRYP_AES_CTR))
|
|
{
|
|
CRYP_AES_IT(hcryp); /*AES*/
|
|
}
|
|
|
|
else if ((hcryp->Init.Algorithm == CRYP_AES_GCM) || (hcryp->Init.Algorithm == CRYP_CR_ALGOMODE_AES_CCM))
|
|
{
|
|
/* if header phase */
|
|
if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
|
|
{
|
|
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
|
}
|
|
else /* if payload phase */
|
|
{
|
|
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
}
|
|
|
|
#else /*AES*/
|
|
if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_CCF) != RESET)
|
|
{
|
|
if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CCFIE) != RESET)
|
|
{
|
|
|
|
/* Clear computation complete flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
|
{
|
|
|
|
/* if header phase */
|
|
if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
|
|
{
|
|
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
|
}
|
|
else /* if payload phase */
|
|
{
|
|
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
|
}
|
|
}
|
|
else if (hcryp->Init.Algorithm == CRYP_AES_CCM)
|
|
{
|
|
/* if header phase */
|
|
if (hcryp->Init.HeaderSize >= hcryp->CrypHeaderCount)
|
|
{
|
|
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
|
}
|
|
else /* if payload phase */
|
|
{
|
|
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
|
}
|
|
}
|
|
else /* AES Algorithm ECB,CBC or CTR*/
|
|
{
|
|
CRYP_AES_IT(hcryp);
|
|
}
|
|
}
|
|
}
|
|
/* Check if error occurred */
|
|
if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_ERRIE) != RESET)
|
|
{
|
|
/* If write Error occurred */
|
|
if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_WRERR) != RESET)
|
|
{
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
|
|
}
|
|
/* If read Error occurred */
|
|
if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_RDERR) != RESET)
|
|
{
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
|
|
}
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
/**
|
|
* @brief Return the CRYP error code.
|
|
* @param hcryp : pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for the CRYP IP
|
|
* @retval CRYP error code
|
|
*/
|
|
uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
return hcryp->ErrorCode;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the CRYP state.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval HAL state
|
|
*/
|
|
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
return hcryp->State;
|
|
}
|
|
|
|
/**
|
|
* @brief Input FIFO transfer completed callback.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_CRYP_InCpltCallback can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Output FIFO transfer completed callback.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_CRYP_OutCpltCallback can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief CRYP error callback.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_CRYP_ErrorCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
#if defined (CRYP)
|
|
|
|
/**
|
|
* @brief Encryption in ECB/CBC Algorithm with DES/TDES standard.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout: specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t temp[2]; /* Temporary CrypOutBuff */
|
|
uint16_t incount; /* Temporary CrypInCount Value */
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t i;
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
/*Start processing*/
|
|
while ((hcryp->CrypInCount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Temporary CrypInCount Value */
|
|
incount = hcryp->CrypInCount;
|
|
/* Write plain data and get cipher data */
|
|
if (((hcryp->Instance->SR & CRYP_FLAG_IFNF) != 0x0U) && (incount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
|
|
/* Wait for OFNE flag to be raised */
|
|
if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state & errorCode*/
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
if (((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
|
|
for (i = 0U; i < 2U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUT;
|
|
}
|
|
i = 0U;
|
|
while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 2U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
}
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief CRYP block input/output data handling under interruption with DES/TDES standard.
|
|
* @note The function is called under interruption only, once
|
|
* interruptions have been enabled by CRYP_Decrypt_IT() and CRYP_Encrypt_IT().
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval none
|
|
*/
|
|
static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t temp[2]; /* Temporary CrypOutBuff */
|
|
uint32_t i;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_BUSY)
|
|
{
|
|
if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U)
|
|
{
|
|
if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_INRIS) != 0x0U)
|
|
{
|
|
/* Write input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
if (hcryp->CrypInCount == ((uint16_t)(hcryp->Size) / 4U))
|
|
{
|
|
/* Disable interruption */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U)
|
|
{
|
|
if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_OUTRIS) != 0x0U)
|
|
{
|
|
/* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
|
|
for (i = 0U; i < 2U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUT;
|
|
}
|
|
i = 0U;
|
|
while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 2U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
if (hcryp->CrypOutCount == ((uint16_t)(hcryp->Size) / 4U))
|
|
{
|
|
/* Disable interruption */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Call output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
#endif /* CRYP */
|
|
|
|
/**
|
|
* @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
|
* @param Timeout: specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
#if defined (AES)
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#else /* CRYP */
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
while ((hcryp->CrypInCount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write plain Ddta and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
#if defined (AES)
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
#else /* CRYP */
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
#if defined (AES)
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
#else /* CRYP */
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else
|
|
{
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption in ECB/CBC & CTR mode with AES Standard
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
|
* @param Timeout: Specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Key preparation for ECB/CBC */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
|
{
|
|
#if defined (AES)
|
|
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
|
|
{
|
|
/* Set key preparation for decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state & error code*/
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Return to decryption operating mode(Mode 3)*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
}
|
|
else /*Mode 4 : decryption & Key preparation*/
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set decryption & Key preparation operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
|
}
|
|
#else /* CRYP */
|
|
/* change ALGOMODE to key preparation for decryption*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for BUSY flag to be raised */
|
|
if (CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Turn back to ALGOMODE of the configuration */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm);
|
|
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else /*Algorithm CTR */
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
}
|
|
|
|
/* Set IV */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
#if defined (AES)
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#else /* CRYP */
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
while ((hcryp->CrypInCount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
/**
|
|
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Key preparation for ECB/CBC */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
|
{
|
|
#if defined (AES)
|
|
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
|
|
{
|
|
/* Set key preparation for decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
count = CRYP_TIMEOUT_KEYPREPARATION;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Return to decryption operating mode(Mode 3)*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
}
|
|
else /*Mode 4 : decryption & key preparation*/
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set decryption & key preparation operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
|
}
|
|
#else /* CRYP */
|
|
|
|
/* change ALGOMODE to key preparation for decryption*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for BUSY flag to be raised */
|
|
count = CRYP_TIMEOUT_KEYPREPARATION;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
|
|
|
/* Turn back to ALGOMODE of the configuration */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm);
|
|
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
else /*Algorithm CTR */
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
}
|
|
|
|
/* Set IV */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
#if defined (AES)
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#else /* CRYP */
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
|
|
#if defined (AES)
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
#else /* CRYP */
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else
|
|
{
|
|
/* Process locked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
/**
|
|
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Key preparation for ECB/CBC */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
|
{
|
|
#if defined (AES)
|
|
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
|
|
{
|
|
/* Set key preparation for decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
count = CRYP_TIMEOUT_KEYPREPARATION;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Return to decryption operating mode(Mode 3)*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
}
|
|
else /*Mode 4 : decryption & key preparation*/
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set decryption & Key preparation operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
|
}
|
|
#else /* CRYP */
|
|
/* change ALGOMODE to key preparation for decryption*/
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for BUSY flag to be raised */
|
|
count = CRYP_TIMEOUT_KEYPREPARATION;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
|
|
|
/* Turn back to ALGOMODE of the configuration */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm);
|
|
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else /*Algorithm CTR */
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
}
|
|
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
#if defined (AES)
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#else /* CRYP */
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief DMA CRYP input data process complete callback.
|
|
* @param hdma: DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
/* Disable the DMA transfer for input FIFO request by resetting the DIEN bit
|
|
in the DMACR register */
|
|
#if defined (CRYP)
|
|
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
|
|
|
|
#else /* AES */
|
|
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
|
|
|
|
/* TinyAES2, No output on CCM AES, unlock should be done when input data process complete */
|
|
if ((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
|
|
{
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Change the CRYP state to ready */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
/* Call input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA CRYP output data process complete callback.
|
|
* @param hdma: DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
/* Disable the DMA transfer for output FIFO request by resetting
|
|
the DOEN bit in the DMACR register */
|
|
|
|
#if defined (CRYP)
|
|
|
|
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
|
|
if ((hcryp->Init.Algorithm & CRYP_AES_GCM) != CRYP_AES_GCM)
|
|
{
|
|
/* Disable CRYP (not allowed in GCM)*/
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
}
|
|
#else /* AES */
|
|
|
|
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
|
|
{
|
|
/* Disable CRYP (not allowed in GCM)*/
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
/* Change the CRYP state to ready */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Call output data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA CRYP communication error callback.
|
|
* @param hdma: DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
#if defined (AES)
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
#endif /* AES */
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief Set the DMA configuration and start the DMA transfer
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param inputaddr: address of the input buffer
|
|
* @param Size: size of the input buffer, must be a multiple of 16.
|
|
* @param outputaddr: address of the output buffer
|
|
* @retval None
|
|
*/
|
|
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
|
|
{
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
|
|
|
|
/* Set the DMA input error callback */
|
|
hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
|
|
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
|
|
|
|
/* Set the DMA output error callback */
|
|
hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
|
|
|
|
#if defined (CRYP)
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Enable the input DMA Stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DIN, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/* Enable the output DMA Stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/* Enable In/Out DMA request */
|
|
hcryp->Instance->DMACR = CRYP_DMACR_DOEN | CRYP_DMACR_DIEN;
|
|
|
|
#else /* AES */
|
|
|
|
if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
|
|
&& ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM))
|
|
{
|
|
/* Enable CRYP (not allowed in GCM & CCM)*/
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
|
|
/* Enable the DMA input stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/* Enable the DMA output stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
|
/* Enable In and Out DMA requests */
|
|
if ((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
|
|
{
|
|
/* Enable only In DMA requests for CCM*/
|
|
SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN));
|
|
}
|
|
else
|
|
{
|
|
/* Enable In and Out DMA requests */
|
|
SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
/**
|
|
* @brief Process Data: Write Input data in polling mode and used in AES functions.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout: Specify Timeout value
|
|
* @retval None
|
|
*/
|
|
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t i;
|
|
#if defined (CRYP)
|
|
uint16_t incount; /* Temporary CrypInCount Value */
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
#endif
|
|
|
|
#if defined (CRYP)
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
incount = hcryp->CrypInCount;
|
|
|
|
if (((hcryp->Instance->SR & CRYP_FLAG_IFNF) != 0x0U) && (incount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
|
|
/* Wait for OFNE flag to be raised */
|
|
if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state & error code*/
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
if (((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUT;
|
|
}
|
|
i = 0U;
|
|
while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
#else /* AES */
|
|
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUTR;
|
|
}
|
|
i = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
/**
|
|
* @brief Handle CRYP block input/output data handling under interruption.
|
|
* @note The function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval HAL status
|
|
*/
|
|
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t i;
|
|
#if defined (CRYP)
|
|
uint16_t incount; /* Temporary CrypInCount Value */
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
#endif
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_BUSY)
|
|
{
|
|
#if defined (CRYP)
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
incount = hcryp->CrypInCount;
|
|
if (((hcryp->Instance->SR & CRYP_FLAG_IFNF) != 0x0U) && (incount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if (hcryp->CrypInCount == ((uint16_t)(hcryp->Size) / 4U))
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
|
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
if (((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUT;
|
|
}
|
|
i = 0U;
|
|
while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
if (hcryp->CrypOutCount == ((uint16_t)(hcryp->Size) / 4U))
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call Output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
#else /*AES*/
|
|
|
|
/* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUTR;
|
|
}
|
|
i = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
|
|
if (hcryp->CrypOutCount == (hcryp->Size / 4U))
|
|
{
|
|
/* Disable Computation Complete flag and errors interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call Output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
if (hcryp->CrypInCount == (hcryp->Size / 4U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Writes Key in Key registers.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param KeySize: Size of Key
|
|
* @retval None
|
|
*/
|
|
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
|
|
{
|
|
#if defined (CRYP)
|
|
|
|
switch (KeySize)
|
|
{
|
|
case CRYP_KEYSIZE_256B:
|
|
hcryp->Instance->K0LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K0RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 6);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 7);
|
|
break;
|
|
case CRYP_KEYSIZE_192B:
|
|
hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
break;
|
|
case CRYP_KEYSIZE_128B:
|
|
hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#else /*AES*/
|
|
switch (KeySize)
|
|
{
|
|
case CRYP_KEYSIZE_256B:
|
|
hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4);
|
|
hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5);
|
|
hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6);
|
|
hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7);
|
|
break;
|
|
case CRYP_KEYSIZE_128B:
|
|
hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1);
|
|
hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2);
|
|
hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3);
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t wordsize = (uint32_t)(hcryp->Size) / 4U ;
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/****************************** Init phase **********************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/*Wait for the CRYPEN bit to be cleared*/
|
|
while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else /* AES */
|
|
/* Workaround 1 : only AES.
|
|
Datatype configuration must be 32 bits during Init phase. Only, after Init, and before re
|
|
enabling the IP, datatype different from 32 bits can be configured.*/
|
|
/* Select DATATYPE 32 */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked & return error */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
#endif /* End AES or CRYP */
|
|
|
|
/************************ Header phase *************************************/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/*************************Payload phase ************************************/
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
#else /* AES */
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
#endif /* End AES or CRYP */
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* recalculate wordsize */
|
|
wordsize = ((wordsize / 4U) * 4U) ;
|
|
}
|
|
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
/* Write input data and get output Data */
|
|
while ((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state & error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* Workaround 2 : CRYP1 & AES generates correct TAG for GCM mode only when input block size is multiple of
|
|
128 bits. If lthe size of the last block of payload is inferior to 128 bits, when GCM encryption
|
|
is selected, then the TAG message will be wrong.*/
|
|
CRYP_Workaround(hcryp, Timeout);
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
#if defined(AES)
|
|
uint32_t loopcounter;
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
#endif /* AES */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
/* Configure Key, IV and process message (header and payload) */
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/******************************* Init phase *********************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
#if defined(CRYP)
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Wait for the CRYPEN bit to be cleared*/
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
|
|
|
#else /* AES */
|
|
|
|
/* Workaround 1 : only AES
|
|
Datatype configuration must be 32 bits during INIT phase. Only, after INIT, and before re
|
|
enabling the IP, datatype different from 32 bits can be configured.*/
|
|
/* Select DATATYPE 32 */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
#endif /* End AES or CRYP */
|
|
|
|
/***************************** Header phase *********************************/
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
#else /* AES */
|
|
|
|
/* Workaround 1: only AES , before re-enabling the IP, datatype can be configured*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
|
|
{
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if (hcryp->CrypInCount == (hcryp->Size / 4U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Size < 16Bytes : first block is the last block*/
|
|
{
|
|
/* Workaround not implemented*/
|
|
/* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
|
|
Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
}
|
|
else if ((hcryp->Init.HeaderSize) < 4U)
|
|
{
|
|
for (loopcounter = 0U; loopcounter < hcryp->Init.HeaderSize ; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
else if ((hcryp->Init.HeaderSize) >= 4U)
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
else
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
#endif /* End AES or CRYP */
|
|
} /* end of if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t wordsize;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/*************************** Init phase ************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
#if defined(CRYP)
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Wait for the CRYPEN bit to be cleared*/
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
|
|
|
#else /* AES */
|
|
|
|
/*Workaround 1 : only AES
|
|
Datatype configuration must be 32 bits during Init phase. Only, after Init, and before re
|
|
enabling the IP, datatype different from 32 bits can be configured.*/
|
|
/* Select DATATYPE 32 */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
#endif /* End AES or CRYP */
|
|
|
|
/************************ Header phase *************************************/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/************************ Payload phase ************************************/
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
#endif /* CRYP */
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
/* CRYP1 IP V < 2.2.1 Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
|
|
Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit don't use DMA mode otherwise TAG is incorrectly generated . */
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
if ((hcryp->Size % 16U) == 0U)
|
|
{
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
else /*to compute last word<128bits, otherwise it will not be encrypted/decrypted */
|
|
{
|
|
wordsize = (uint32_t)(hcryp->Size) + (16U - ((uint32_t)(hcryp->Size) % 16U)) ;
|
|
|
|
/* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4 */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)wordsize / 4U),
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unLocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief AES CCM encryption/decryption processing in polling mode
|
|
* for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t wordsize = (uint32_t)(hcryp->Size) / 4U;
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
#if defined(AES)
|
|
uint32_t loopcounter;
|
|
uint32_t npblb;
|
|
uint32_t lastwordsize;
|
|
#endif /* AES */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
#if defined(CRYP)
|
|
|
|
/********************** Init phase ******************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector (IV) with CTR1 information */
|
|
hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
|
|
hcryp->Instance->IV0RR = hcryp->Init.B0[1];
|
|
hcryp->Instance->IV1LR = hcryp->Init.B0[2];
|
|
hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1) | CRYP_CCM_CTR1_2;
|
|
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Write B0 packet into CRYP_DIN Register*/
|
|
if (hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
|
{
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 1));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 2));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 3));
|
|
}
|
|
else if (hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
|
{
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 1), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 2), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 3), 16);
|
|
}
|
|
else if (hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
|
{
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 1));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 2));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 3));
|
|
}
|
|
else
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 1);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 2);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 3);
|
|
}
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/*Wait for the CRYPEN bit to be cleared*/
|
|
while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
#else /* AES */
|
|
/*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* configured encryption mode */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector with zero values*/
|
|
hcryp->Instance->IVR3 = 0U;
|
|
hcryp->Instance->IVR2 = 0U;
|
|
hcryp->Instance->IVR1 = 0U;
|
|
hcryp->Instance->IVR0 = 0U;
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Write the B0 packet into CRYP_DIN*/
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 1);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 2);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 3);
|
|
|
|
/* wait until the end of computation */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked & return error */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* From that point the whole message must be processed, first the Header then the payload.
|
|
First the Header block(B1) : associated data length expressed in bytes concatenated with Associated Data (A)*/
|
|
|
|
if (hcryp->Init.HeaderSize != 0U)
|
|
{
|
|
if ((hcryp->Init.HeaderSize % 4U) == 0U)
|
|
{
|
|
/* HeaderSize %4, no padding */
|
|
for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U)
|
|
{
|
|
/* Write the Input block in the Data Input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Write Header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
/* Then the payload: cleartext payload (not the ciphertext payload).
|
|
Write input Data, no output Data to get */
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* recalculate wordsize */
|
|
wordsize = ((wordsize / 4U) * 4U) ;
|
|
}
|
|
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
while ((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
|
|
{
|
|
/* Write the last input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0U;
|
|
loopcounter++;
|
|
}
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
}
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
|
|
#if defined(CRYP)
|
|
|
|
/************************* Header phase *************************************/
|
|
/* Header block(B1) : associated data length expressed in bytes concatenated
|
|
with Associated Data (A)*/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/********************** Payload phase ***************************************/
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* recalculate wordsize */
|
|
wordsize = ((wordsize / 4U) * 4U) ;
|
|
}
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
/* Write input data and get output data */
|
|
while ((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* CRYP Workaround : CRYP1 generates correct TAG during CCM decryption only when ciphertext blocks size is multiple of
|
|
128 bits. If lthe size of the last block of payload is inferior to 128 bits, when CCM decryption
|
|
is selected, then the TAG message will be wrong.*/
|
|
CRYP_Workaround(hcryp, Timeout);
|
|
}
|
|
#endif /* CRYP */
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief AES CCM encryption/decryption process in interrupt mode
|
|
* for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
#if defined(CRYP)
|
|
__IO uint32_t count = 0U;
|
|
#endif /* CRYP */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
/* Configure Key, IV and process message (header and payload) */
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
#if defined(CRYP)
|
|
|
|
/************ Init phase ************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector (IV) with CTR1 information */
|
|
hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
|
|
hcryp->Instance->IV0RR = hcryp->Init.B0[1];
|
|
hcryp->Instance->IV1LR = hcryp->Init.B0[2];
|
|
hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1) | CRYP_CCM_CTR1_2;
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Write the B0 packet into CRYP_DIN Register*/
|
|
if (hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
|
{
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 1));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 2));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 3));
|
|
}
|
|
else if (hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
|
{
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 1), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 2), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 3), 16);
|
|
}
|
|
else if (hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
|
{
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 1));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 2));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 3));
|
|
}
|
|
else
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 1);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 2);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 3);
|
|
}
|
|
/*Wait for the CRYPEN bit to be cleared*/
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
} /* end of if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
#else /* AES */
|
|
|
|
/*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* configured mode and encryption mode */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector with zero values*/
|
|
hcryp->Instance->IVR3 = 0U;
|
|
hcryp->Instance->IVR2 = 0U;
|
|
hcryp->Instance->IVR1 = 0U;
|
|
hcryp->Instance->IVR0 = 0U;
|
|
|
|
/* Enable interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Write the B0 packet into CRYP_DIN*/
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 1);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 2);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 3);
|
|
|
|
} /* end of if (DoKeyIVConfig == 1U) */
|
|
#endif /* End AES or CRYP */
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
/**
|
|
* @brief AES CCM encryption/decryption process in DMA mode
|
|
* for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t wordsize;
|
|
__IO uint32_t count = 0U;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
#if defined(AES)
|
|
uint32_t loopcounter;
|
|
uint32_t npblb;
|
|
uint32_t lastwordsize;
|
|
#endif
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
#if defined(CRYP)
|
|
|
|
/************************** Init phase **************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector (IV) with CTR1 information */
|
|
hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
|
|
hcryp->Instance->IV0RR = hcryp->Init.B0[1];
|
|
hcryp->Instance->IV1LR = hcryp->Init.B0[2];
|
|
hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1) | CRYP_CCM_CTR1_2;
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Write the B0 packet into CRYP_DIN Register*/
|
|
if (hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
|
{
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 1));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 2));
|
|
hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 3));
|
|
}
|
|
else if (hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
|
{
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 1), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 2), 16);
|
|
hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 3), 16);
|
|
}
|
|
else if (hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
|
{
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 1));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 2));
|
|
hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 3));
|
|
}
|
|
else
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 1);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 2);
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 3);
|
|
}
|
|
|
|
/*Wait for the CRYPEN bit to be cleared*/
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
|
|
|
#else /* AES */
|
|
|
|
/*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* configured encryption mode */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector with zero values*/
|
|
hcryp->Instance->IVR3 = 0U;
|
|
hcryp->Instance->IVR2 = 0U;
|
|
hcryp->Instance->IVR1 = 0U;
|
|
hcryp->Instance->IVR0 = 0U;
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/*Write the B0 packet into CRYP_DIN*/
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 1);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 2);
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 3);
|
|
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* From that point the whole message must be processed, first the Header then the payload.
|
|
First the Header block(B1) : associated data length expressed in bytes concatenated with Associated Data (A)*/
|
|
|
|
if (hcryp->Init.HeaderSize != 0U)
|
|
{
|
|
if ((hcryp->Init.HeaderSize % 4U) == 0U)
|
|
{
|
|
/* HeaderSize %4, no padding */
|
|
for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U)
|
|
{
|
|
/* Write the Input block in the Data Input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/* wait until the end of computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Write Header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
/* Then the payload: cleartext payload (not the ciphertext payload).
|
|
Write input Data, no output Data to get */
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
if (hcryp->Size >= 16U)
|
|
{
|
|
if ((hcryp->Size % 16U) == 0U)
|
|
{
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
else /*to compute last word<128bits, otherwise it will not be encrypted/decrypted */
|
|
{
|
|
wordsize = (uint32_t)(hcryp->Size) + (16U - ((uint32_t)(hcryp->Size) % 16U)) ;
|
|
|
|
/* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4 */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)wordsize / 4U),
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
}
|
|
if ((hcryp->Size < 16U) != 0U)
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
|
|
{
|
|
/* Write the last input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0U;
|
|
loopcounter++;
|
|
}
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unLocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
#endif /* AES */
|
|
#if defined(CRYP)
|
|
/********************* Header phase *****************************************/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/******************** Payload phase *****************************************/
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
/* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption & CCM Decryption
|
|
Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit don't use HAL_CRYP_AESGCM_DMA otherwise TAG is incorrectly generated for GCM Encryption. */
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
if ((hcryp->Size % 16U) == 0U)
|
|
{
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), hcryp->Size / 4U, (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
else
|
|
{
|
|
wordsize = (uint32_t)(hcryp->Size) + 16U - ((uint32_t)(hcryp->Size) % 16U) ;
|
|
|
|
/* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4*/
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (uint16_t)wordsize / 4U,
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
}
|
|
else /*Size = 0*/
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
#endif /* CRYP */
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the payload phase in iterrupt mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval state
|
|
*/
|
|
static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
uint32_t i;
|
|
#if defined(AES)
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
#endif /* AES */
|
|
|
|
/***************************** Payload phase *******************************/
|
|
|
|
#if defined(CRYP)
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if (((hcryp->Size / 4U) == hcryp->CrypInCount) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
|
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
if (hcryp->CrypOutCount < (hcryp->Size / 4U))
|
|
{
|
|
/* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUT;
|
|
}
|
|
i = 0U;
|
|
while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
if (((hcryp->Size / 4U) == hcryp->CrypOutCount) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
else if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* Size should be %4 in word and %16 in byte otherwise TAG will be incorrectly generated for GCM Encryption & CCM Decryption
|
|
Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit don't use CRYP_AESGCM_Encrypt_IT otherwise TAG is incorrectly generated. */
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
|
|
|
if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
|
{
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUT;
|
|
}
|
|
if (((hcryp->Size) / 4U) == 0U)
|
|
{
|
|
for (i = 0U; i < ((uint32_t)(hcryp->Size) % 4U); i++)
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
}
|
|
i = 0x0U;
|
|
while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
}
|
|
if (hcryp->CrypOutCount >= (hcryp->Size / 4U))
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI | CRYP_IT_INI);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#else /* AES */
|
|
|
|
/* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUTR;
|
|
}
|
|
i = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
/*Temporary CrypOutCount Value*/
|
|
outcount = hcryp->CrypOutCount;
|
|
|
|
if ((hcryp->CrypOutCount >= (hcryp->Size / 4U)) && ((outcount * 4U) >= hcryp->Size))
|
|
{
|
|
/* Disable computation complete flag and errors interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Last block of payload < 128bit*/
|
|
{
|
|
/* Workaround not implemented, Size should be %4 otherwise Tag will be incorrectly
|
|
generated for GCM Encryption & CCM Decryption. Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption & CCM Decryption. */
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
#endif /* AES */
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Sets the header phase in polling mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @param Timeout: Timeout value
|
|
* @retval state
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint32_t size_in_bytes;
|
|
uint32_t tmp;
|
|
uint32_t mask[12] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU}; /* 8-bit data type */
|
|
|
|
/***************************** Header phase for GCM/GMAC or CCM *********************************/
|
|
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
size_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
size_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
if (size_in_bytes != 0U)
|
|
{
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
if ((size_in_bytes % 16U) == 0U)
|
|
{
|
|
/* HeaderSize %4, no padding */
|
|
for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/* Wait for IFEM to be raised */
|
|
if (CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Write header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/* Wait for IFEM to be raised */
|
|
if (CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((size_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeroes */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)];
|
|
hcryp->Instance->DIN = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
/* Wait for CCF IFEM to be raised */
|
|
if (CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* Wait until the complete message has been processed */
|
|
if (CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked & return error */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
#else /* AES */
|
|
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
|
{
|
|
/* Workaround 1 :only AES before re-enabling the IP, datatype can be configured.*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
}
|
|
/* If size_in_bytes is a multiple of blocks (a multiple of four 32-bits words ) */
|
|
if ((size_in_bytes % 16U) == 0U)
|
|
{
|
|
/* No padding */
|
|
for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Write header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
/* Write last complete words */
|
|
for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((size_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeroes */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else
|
|
{
|
|
#if defined(AES)
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
|
{
|
|
/*Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
#endif /* AES */
|
|
}
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the header phase when using DMA in process
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @retval None
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t loopcounter;
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
uint32_t mask[12] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU}; /* 8-bit data type */
|
|
|
|
/***************************** Header phase for GCM/GMAC or CCM *********************************/
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
if (headersize_in_bytes != 0U)
|
|
{
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
if ((headersize_in_bytes % 16U) == 0U)
|
|
{
|
|
/* HeaderSize %4, no padding */
|
|
for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter += 4U)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/* Wait for IFEM to be raised */
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Write header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/* Wait for IFEM to be raised */
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeroes */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DIN = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
/* Wait for IFEM to be raised */
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
|
|
}
|
|
/* Wait until the complete message has been processed */
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
|
|
|
#else /* AES */
|
|
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
|
{
|
|
/* Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
if ((headersize_in_bytes % 16U) == 0U)
|
|
{
|
|
/* HeaderSize %4, no padding */
|
|
for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/*Wait on CCF flag*/
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Write header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
|
{
|
|
/* Write the Input block in the Data Input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
/*Wait on CCF flag*/
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes /4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeroes */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
/*Wait on CCF flag*/
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
else
|
|
{
|
|
#if defined(AES)
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
|
{
|
|
/*Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
#endif /* AES */
|
|
}
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the header phase in interrupt mode
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @retval None
|
|
*/
|
|
static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t loopcounter;
|
|
#if defined(AES)
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
#endif
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
uint32_t mask[12] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU}; /* 8-bit data type */
|
|
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
/***************************** Header phase *********************************/
|
|
|
|
#if defined(CRYP)
|
|
if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U))
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
|
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
else if (((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U)
|
|
|
|
{
|
|
/* HeaderSize %4, no padding */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
else
|
|
{
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < ((headersize_in_bytes / 4U) % 4U); loopcounter++)
|
|
{
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DIN = tmp;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DIN = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
}
|
|
#else /* AES */
|
|
|
|
if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U))
|
|
{
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Payload phase not supported in CCM AES2 */
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
|
{
|
|
/* Select payload phase once the header phase is performed */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
|
}
|
|
if (hcryp->Init.Algorithm == CRYP_AES_CCM)
|
|
{
|
|
/* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Size < 4 words : first block is the last block*/
|
|
{
|
|
/* Workaround not implemented, Size should be %4 otherwise Tag will be incorrectly
|
|
generated for GCM Encryption. Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
}
|
|
else if (((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U)
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
|
|
{
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < ((headersize_in_bytes / 4U) % 4U); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
}
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Workaround used for GCM/CCM mode.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout: specify Timeout value
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
#if defined(CRYP)
|
|
uint32_t iv1temp;
|
|
uint32_t temp[4] = {0};
|
|
uint32_t temp2[4] = {0};
|
|
#endif /* CRYP */
|
|
uint32_t intermediate_data[4] = {0};
|
|
uint32_t index;
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
#if defined(CRYP)
|
|
|
|
/* Workaround 2, case GCM encryption */
|
|
if (hcryp->Init.Algorithm == CRYP_AES_GCM)
|
|
{
|
|
if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/*Workaround in order to properly compute authentication tags while doing
|
|
a GCM encryption with the last block of payload size inferior to 128 bits*/
|
|
/* Disable CRYP to start the final phase */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/*Update CRYP_IV1R register and ALGOMODE*/
|
|
hcryp->Instance->IV1RR = ((hcryp->Instance->CSGCMCCM7R) - 1U);
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CTR);
|
|
|
|
/* Enable CRYP to start the final phase */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (index = 0; index < lastwordsize; index ++)
|
|
{
|
|
/* Write the last input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DIN = 0U;
|
|
index++;
|
|
}
|
|
/* Wait for OFNE flag to be raised */
|
|
if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
|
{
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
/* Read the output block from the output FIFO */
|
|
intermediate_data[index] = hcryp->Instance->DOUT;
|
|
|
|
/* Intermediate data buffer to be used in for the workaround*/
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = intermediate_data[index];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
}
|
|
|
|
if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/*workaround in order to properly compute authentication tags while doing
|
|
a GCM encryption with the last block of payload size inferior to 128 bits*/
|
|
/* Change the AES mode to GCM mode and Select Final phase */
|
|
/* configured CHMOD GCM */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_GCM);
|
|
|
|
/* configured final phase */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_GCM_CCMPH, CRYP_PHASE_FINAL);
|
|
|
|
if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_32B)
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFFFFFF00U;
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFFFF0000U;
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFF000000U;
|
|
}
|
|
}
|
|
else if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_8B)
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __REV(0xFFFFFF00U);
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __REV(0xFFFF0000U);
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __REV(0xFF000000U);
|
|
}
|
|
}
|
|
else if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_16B)
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFFFF00U), 16);
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFF0000U), 16);
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __ROR((0xFF000000U), 16);
|
|
}
|
|
}
|
|
else /*CRYP_DATATYPE_1B*/
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFFFF00U);
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFF0000U);
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __RBIT(0xFF000000U);
|
|
}
|
|
}
|
|
for (index = 0U; index < lastwordsize; index ++)
|
|
{
|
|
/*Write the intermediate_data in the IN FIFO */
|
|
hcryp->Instance->DIN = intermediate_data[index];
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DIN = 0x0U;
|
|
index++;
|
|
}
|
|
/* Wait for OFNE flag to be raised */
|
|
if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
|
{
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
intermediate_data[index] = hcryp->Instance->DOUT;
|
|
}
|
|
}
|
|
}
|
|
} /* End of GCM encryption */
|
|
else
|
|
{
|
|
/* Workaround 2, case CCM decryption, in order to properly compute
|
|
authentication tags while doing a CCM decryption with the last block
|
|
of payload size inferior to 128 bits*/
|
|
|
|
if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_DECRYPT)
|
|
{
|
|
iv1temp = hcryp->Instance->CSGCMCCM7R;
|
|
|
|
/* Disable CRYP to start the final phase */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
temp[0] = hcryp->Instance->CSGCMCCM0R;
|
|
temp[1] = hcryp->Instance->CSGCMCCM1R;
|
|
temp[2] = hcryp->Instance->CSGCMCCM2R;
|
|
temp[3] = hcryp->Instance->CSGCMCCM3R;
|
|
|
|
hcryp->Instance->IV1RR = iv1temp;
|
|
|
|
/* Configured CHMOD CTR */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CTR);
|
|
|
|
/* Enable CRYP to start the final phase */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (index = 0; index < lastwordsize; index ++)
|
|
{
|
|
/* Write the last Input block in the IN FIFO */
|
|
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DIN = 0U;
|
|
index++;
|
|
}
|
|
/* Wait for OFNE flag to be raised */
|
|
if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
|
{
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
/* Read the Output block from the Output FIFO */
|
|
intermediate_data[index] = hcryp->Instance->DOUT;
|
|
|
|
/*intermediate data buffer to be used in for the workaround*/
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = intermediate_data[index];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
}
|
|
|
|
if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_DECRYPT)
|
|
{
|
|
temp2[0] = hcryp->Instance->CSGCMCCM0R;
|
|
temp2[1] = hcryp->Instance->CSGCMCCM1R;
|
|
temp2[2] = hcryp->Instance->CSGCMCCM2R;
|
|
temp2[3] = hcryp->Instance->CSGCMCCM3R;
|
|
|
|
/* configured CHMOD CCM */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CCM);
|
|
|
|
/* configured Header phase */
|
|
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_GCM_CCMPH, CRYP_PHASE_HEADER);
|
|
|
|
/*set to zero the bits corresponding to the padded bits*/
|
|
for (index = lastwordsize; index < 4U; index ++)
|
|
{
|
|
intermediate_data[index] = 0U;
|
|
}
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFFFFFF00U;
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFFFF0000U;
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFF000000U;
|
|
}
|
|
for (index = 0U; index < 4U ; index ++)
|
|
{
|
|
intermediate_data[index] ^= temp[index];
|
|
intermediate_data[index] ^= temp2[index];
|
|
}
|
|
for (index = 0U; index < 4U; index ++)
|
|
{
|
|
/* Write the last Input block in the IN FIFO */
|
|
hcryp->Instance->DIN = intermediate_data[index] ;
|
|
}
|
|
|
|
/* Wait for BUSY flag to be raised */
|
|
if (CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
} /* End of CCM WKA*/
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
#else /* AES */
|
|
|
|
/*Workaround 2: case GCM encryption, during payload phase and before inserting
|
|
the last block of paylaod, which size is inferior to 128 bits */
|
|
|
|
if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/* configured CHMOD CTR */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_CHMOD, CRYP_AES_CTR);
|
|
}
|
|
/* last block optionally pad the data with zeros*/
|
|
for (index = 0U; index < lastwordsize; index ++)
|
|
{
|
|
/* Write the last Input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0U;
|
|
index++;
|
|
}
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
/* Read the Output block from the Output FIFO */
|
|
intermediate_data[index] = hcryp->Instance->DOUTR;
|
|
|
|
/*intermediate data buffer to be used in the workaround*/
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = intermediate_data[index];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
|
|
if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/* configured CHMOD GCM */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_CHMOD, CRYP_AES_GCM_GMAC);
|
|
|
|
/* Select final phase */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_FINAL);
|
|
|
|
if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_32B)
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFFFFFF00U;
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFFFF0000U;
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= 0xFF000000U;
|
|
}
|
|
}
|
|
else if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_8B)
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __REV(0xFFFFFF00U);
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __REV(0xFFFF0000U);
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __REV(0xFF000000U);
|
|
}
|
|
}
|
|
else if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_16B)
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFFFF00U), 16);
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFF0000U), 16);
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __ROR((0xFF000000U), 16);
|
|
}
|
|
}
|
|
else /*CRYP_DATATYPE_1B*/
|
|
{
|
|
if ((npblb % 4U) == 1U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFFFF00U);
|
|
}
|
|
if ((npblb % 4U) == 2U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFF0000U);
|
|
}
|
|
if ((npblb % 4U) == 3U)
|
|
{
|
|
intermediate_data[lastwordsize - 1U] &= __RBIT(0xFF000000U);
|
|
}
|
|
}
|
|
|
|
/*Write the intermediate_data in the IN FIFO */
|
|
for (index = 0U; index < lastwordsize; index ++)
|
|
{
|
|
hcryp->Instance->DINR = intermediate_data[index];
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0U;
|
|
index++;
|
|
}
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
intermediate_data[index] = hcryp->Instance->DOUTR;
|
|
}
|
|
}/*End of Workaround 2*/
|
|
#endif /* End AES or CRYP */
|
|
}
|
|
|
|
#if defined (CRYP)
|
|
|
|
/**
|
|
* @brief Handle CRYP hardware block Timeout when waiting for IFEM flag to be raised.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Timeout: Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle CRYP hardware block Timeout when waiting for BUSY flag to be raised.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Timeout: Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Handle CRYP hardware block Timeout when waiting for OFNE flag to be raised.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Timeout: Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
#else /* AES */
|
|
|
|
/**
|
|
* @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
|
|
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Timeout: Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
#endif /* End AES or CRYP */
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_CRYP_MODULE_ENABLED */
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
#endif /* TinyAES or CRYP*/
|
|
/**
|
|
* @}
|
|
*/
|
|
|