This repository has been archived on 2024-01-25. You can view files and clone it, but cannot push or open issues or pull requests.
Sem-dma/Drivers/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spdifrx.c
Julien Chevalley 902141e8b6 Initial commit
2023-12-11 14:43:05 +01:00

1622 lines
52 KiB
C

/**
******************************************************************************
* @file stm32f7xx_hal_spdifrx.c
* @author MCD Application Team
* @brief This file provides firmware functions to manage the following
* functionalities of the SPDIFRX audio interface:
* + Initialization and Configuration
* + Data transfers functions
* + DMA transfers management
* + Interrupts and flags management
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
The SPDIFRX HAL driver can be used as follow:
(#) Declare SPDIFRX_HandleTypeDef handle structure.
(#) Initialize the SPDIFRX low level resources by implement the HAL_SPDIFRX_MspInit() API:
(##) Enable the SPDIFRX interface clock.
(##) SPDIFRX pins configuration:
(+++) Enable the clock for the SPDIFRX GPIOs.
(+++) Configure these SPDIFRX pins as alternate function pull-up.
(##) NVIC configuration if you need to use interrupt process (HAL_SPDIFRX_ReceiveControlFlow_IT() and HAL_SPDIFRX_ReceiveDataFlow_IT() API's).
(+++) Configure the SPDIFRX interrupt priority.
(+++) Enable the NVIC SPDIFRX IRQ handle.
(##) DMA Configuration if you need to use DMA process (HAL_SPDIFRX_ReceiveDataFlow_DMA() and HAL_SPDIFRX_ReceiveControlFlow_DMA() API's).
(+++) Declare a DMA handle structure for the reception of the Data Flow channel.
(+++) Declare a DMA handle structure for the reception of the Control Flow channel.
(+++) Enable the DMAx interface clock.
(+++) Configure the declared DMA handle structure CtrlRx/DataRx with the required parameters.
(+++) Configure the DMA Channel.
(+++) Associate the initialized DMA handle to the SPDIFRX DMA CtrlRx/DataRx handle.
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the
DMA CtrlRx/DataRx channel.
(#) Program the input selection, re-tries number, wait for activity, channel status selection, data format, stereo mode and masking of user bits
using HAL_SPDIFRX_Init() function.
-@- The specific SPDIFRX interrupts (RXNE/CSRNE and Error Interrupts) will be managed using the macros
__SPDIFRX_ENABLE_IT() and __SPDIFRX_DISABLE_IT() inside the receive process.
-@- Make sure that ck_spdif clock is configured.
(#) Three operation modes are available within this driver :
*** Polling mode for reception operation (for debug purpose) ***
================================================================
[..]
(+) Receive data flow in blocking mode using HAL_SPDIFRX_ReceiveDataFlow()
(+) Receive control flow of data in blocking mode using HAL_SPDIFRX_ReceiveControlFlow()
*** Interrupt mode for reception operation ***
=========================================
[..]
(+) Receive an amount of data (Data Flow) in non blocking mode using HAL_SPDIFRX_ReceiveDataFlow_IT()
(+) Receive an amount of data (Control Flow) in non blocking mode using HAL_SPDIFRX_ReceiveControlFlow_IT()
(+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback
(+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback
(+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback
*** DMA mode for reception operation ***
========================================
[..]
(+) Receive an amount of data (Data Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveDataFlow_DMA()
(+) Receive an amount of data (Control Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveControlFlow_DMA()
(+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback
(+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback
(+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback
(+) Stop the DMA Transfer using HAL_SPDIFRX_DMAStop()
*** SPDIFRX HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in SPDIFRX HAL driver.
(+) __HAL_SPDIFRX_IDLE: Disable the specified SPDIFRX peripheral (IDEL State)
(+) __HAL_SPDIFRX_SYNC: Enable the synchronization state of the specified SPDIFRX peripheral (SYNC State)
(+) __HAL_SPDIFRX_RCV: Enable the receive state of the specified SPDIFRX peripheral (RCV State)
(+) __HAL_SPDIFRX_ENABLE_IT : Enable the specified SPDIFRX interrupts
(+) __HAL_SPDIFRX_DISABLE_IT : Disable the specified SPDIFRX interrupts
(+) __HAL_SPDIFRX_GET_FLAG: Check whether the specified SPDIFRX flag is set or not.
[..]
(@) You can refer to the SPDIFRX HAL driver header file for more useful macros
*** Callback registration ***
=============================================
The compilation define USE_HAL_SPDIFRX_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use HAL_SPDIFRX_RegisterCallback() function to register an interrupt callback.
The HAL_SPDIFRX_RegisterCallback() function allows to register the following callbacks:
(+) RxHalfCpltCallback : SPDIFRX Data flow half completed callback.
(+) RxCpltCallback : SPDIFRX Data flow completed callback.
(+) CxHalfCpltCallback : SPDIFRX Control flow half completed callback.
(+) CxCpltCallback : SPDIFRX Control flow completed callback.
(+) ErrorCallback : SPDIFRX error callback.
(+) MspInitCallback : SPDIFRX MspInit.
(+) MspDeInitCallback : SPDIFRX MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use HAL_SPDIFRX_UnRegisterCallback() function to reset a callback to the default
weak function.
The HAL_SPDIFRX_UnRegisterCallback() function takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset the following callbacks:
(+) RxHalfCpltCallback : SPDIFRX Data flow half completed callback.
(+) RxCpltCallback : SPDIFRX Data flow completed callback.
(+) CxHalfCpltCallback : SPDIFRX Control flow half completed callback.
(+) CxCpltCallback : SPDIFRX Control flow completed callback.
(+) ErrorCallback : SPDIFRX error callback.
(+) MspInitCallback : SPDIFRX MspInit.
(+) MspDeInitCallback : SPDIFRX MspDeInit.
By default, after the HAL_SPDIFRX_Init() and when the state is HAL_SPDIFRX_STATE_RESET
all callbacks are set to the corresponding weak functions :
HAL_SPDIFRX_RxHalfCpltCallback() , HAL_SPDIFRX_RxCpltCallback(), HAL_SPDIFRX_CxHalfCpltCallback(),
HAL_SPDIFRX_CxCpltCallback() and HAL_SPDIFRX_ErrorCallback()
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak function in the HAL_SPDIFRX_Init()/ HAL_SPDIFRX_DeInit() only when
these callbacks pointers are NULL (not registered beforehand).
If not, MspInit or MspDeInit callbacks pointers are not null, the HAL_SPDIFRX_Init() / HAL_SPDIFRX_DeInit()
keep and use the user MspInit/MspDeInit functions (registered beforehand)
Callbacks can be registered/unregistered in HAL_SPDIFRX_STATE_READY state only.
Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
in HAL_SPDIFRX_STATE_READY or HAL_SPDIFRX_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_SPDIFRX_RegisterCallback() before calling HAL_SPDIFRX_DeInit()
or HAL_SPDIFRX_Init() function.
When The compilation define USE_HAL_SPDIFRX_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"
/** @addtogroup STM32F7xx_HAL_Driver
* @{
*/
/** @defgroup SPDIFRX SPDIFRX
* @brief SPDIFRX HAL module driver
* @{
*/
#ifdef HAL_SPDIFRX_MODULE_ENABLED
#if defined (SPDIFRX)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define SPDIFRX_TIMEOUT_VALUE 0xFFFFU
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup SPDIFRX_Private_Functions
* @{
*/
static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma);
static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma);
static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma);
static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma);
static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif);
static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif);
static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t tickstart);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup SPDIFRX_Exported_Functions SPDIFRX Exported Functions
* @{
*/
/** @defgroup SPDIFRX_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
de-initialize the SPDIFRX peripheral:
(+) User must Implement HAL_SPDIFRX_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
(+) Call the function HAL_SPDIFRX_Init() to configure the SPDIFRX peripheral with
the selected configuration:
(++) Input Selection (IN0, IN1,...)
(++) Maximum allowed re-tries during synchronization phase
(++) Wait for activity on SPDIF selected input
(++) Channel status selection (from channel A or B)
(++) Data format (LSB, MSB, ...)
(++) Stereo mode
(++) User bits masking (PT,C,U,V,...)
(+) Call the function HAL_SPDIFRX_DeInit() to restore the default configuration
of the selected SPDIFRXx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initializes the SPDIFRX according to the specified parameters
* in the SPDIFRX_InitTypeDef and create the associated handle.
* @param hspdif SPDIFRX handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_Init(SPDIFRX_HandleTypeDef *hspdif)
{
uint32_t tmpreg;
/* Check the SPDIFRX handle allocation */
if(hspdif == NULL)
{
return HAL_ERROR;
}
/* Check the SPDIFRX parameters */
assert_param(IS_STEREO_MODE(hspdif->Init.StereoMode));
assert_param(IS_SPDIFRX_INPUT_SELECT(hspdif->Init.InputSelection));
assert_param(IS_SPDIFRX_MAX_RETRIES(hspdif->Init.Retries));
assert_param(IS_SPDIFRX_WAIT_FOR_ACTIVITY(hspdif->Init.WaitForActivity));
assert_param(IS_SPDIFRX_CHANNEL(hspdif->Init.ChannelSelection));
assert_param(IS_SPDIFRX_DATA_FORMAT(hspdif->Init.DataFormat));
assert_param(IS_PREAMBLE_TYPE_MASK(hspdif->Init.PreambleTypeMask));
assert_param(IS_CHANNEL_STATUS_MASK(hspdif->Init.ChannelStatusMask));
assert_param(IS_VALIDITY_MASK(hspdif->Init.ValidityBitMask));
assert_param(IS_PARITY_ERROR_MASK(hspdif->Init.ParityErrorMask));
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
if(hspdif->State == HAL_SPDIFRX_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hspdif->Lock = HAL_UNLOCKED;
hspdif->RxHalfCpltCallback = HAL_SPDIFRX_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
hspdif->RxCpltCallback = HAL_SPDIFRX_RxCpltCallback; /* Legacy weak RxCpltCallback */
hspdif->CxHalfCpltCallback = HAL_SPDIFRX_CxHalfCpltCallback; /* Legacy weak CxHalfCpltCallback */
hspdif->CxCpltCallback = HAL_SPDIFRX_CxCpltCallback; /* Legacy weak CxCpltCallback */
hspdif->ErrorCallback = HAL_SPDIFRX_ErrorCallback; /* Legacy weak ErrorCallback */
if(hspdif->MspInitCallback == NULL)
{
hspdif->MspInitCallback = HAL_SPDIFRX_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware */
hspdif->MspInitCallback(hspdif);
}
#else
if(hspdif->State == HAL_SPDIFRX_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hspdif->Lock = HAL_UNLOCKED;
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
HAL_SPDIFRX_MspInit(hspdif);
}
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
/* SPDIFRX peripheral state is BUSY */
hspdif->State = HAL_SPDIFRX_STATE_BUSY;
/* Disable SPDIFRX interface (IDLE State) */
__HAL_SPDIFRX_IDLE(hspdif);
/* Reset the old SPDIFRX CR configuration */
tmpreg = hspdif->Instance->CR;
tmpreg &= ~(SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK |
SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK |
SPDIFRX_CR_CHSEL | SPDIFRX_CR_NBTR | SPDIFRX_CR_WFA |
SPDIFRX_CR_INSEL);
/* Sets the new configuration of the SPDIFRX peripheral */
tmpreg |= (hspdif->Init.StereoMode |
hspdif->Init.InputSelection |
hspdif->Init.Retries |
hspdif->Init.WaitForActivity |
hspdif->Init.ChannelSelection |
hspdif->Init.DataFormat |
hspdif->Init.PreambleTypeMask |
hspdif->Init.ChannelStatusMask |
hspdif->Init.ValidityBitMask |
hspdif->Init.ParityErrorMask
);
hspdif->Instance->CR = tmpreg;
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE;
/* SPDIFRX peripheral state is READY*/
hspdif->State = HAL_SPDIFRX_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the SPDIFRX peripheral
* @param hspdif SPDIFRX handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_DeInit(SPDIFRX_HandleTypeDef *hspdif)
{
/* Check the SPDIFRX handle allocation */
if(hspdif == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_SPDIFRX_ALL_INSTANCE(hspdif->Instance));
hspdif->State = HAL_SPDIFRX_STATE_BUSY;
/* Disable SPDIFRX interface (IDLE state) */
__HAL_SPDIFRX_IDLE(hspdif);
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
if(hspdif->MspDeInitCallback == NULL)
{
hspdif->MspDeInitCallback = HAL_SPDIFRX_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware */
hspdif->MspDeInitCallback(hspdif);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
HAL_SPDIFRX_MspDeInit(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE;
/* SPDIFRX peripheral state is RESET*/
hspdif->State = HAL_SPDIFRX_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
/**
* @brief SPDIFRX MSP Init
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_MspInit(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_MspInit could be implemented in the user file
*/
}
/**
* @brief SPDIFRX MSP DeInit
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_MspDeInit(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_MspDeInit could be implemented in the user file
*/
}
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User SPDIFRX Callback
* To be used instead of the weak predefined callback
* @param hspdif SPDIFRX handle
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_SPDIFRX_RX_HALF_CB_ID SPDIFRX Data flow half completed callback ID
* @arg @ref HAL_SPDIFRX_RX_CPLT_CB_ID SPDIFRX Data flow completed callback ID
* @arg @ref HAL_SPDIFRX_CX_HALF_CB_ID SPDIFRX Control flow half completed callback ID
* @arg @ref HAL_SPDIFRX_CX_CPLT_CB_ID SPDIFRX Control flow completed callback ID
* @arg @ref HAL_SPDIFRX_ERROR_CB_ID SPDIFRX error callback ID
* @arg @ref HAL_SPDIFRX_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_SPDIFRX_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_RegisterCallback(SPDIFRX_HandleTypeDef *hspdif, HAL_SPDIFRX_CallbackIDTypeDef CallbackID, pSPDIFRX_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if(pCallback == NULL)
{
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hspdif);
if(HAL_SPDIFRX_STATE_READY == hspdif->State)
{
switch (CallbackID)
{
case HAL_SPDIFRX_RX_HALF_CB_ID :
hspdif->RxHalfCpltCallback = pCallback;
break;
case HAL_SPDIFRX_RX_CPLT_CB_ID :
hspdif->RxCpltCallback = pCallback;
break;
case HAL_SPDIFRX_CX_HALF_CB_ID :
hspdif->CxHalfCpltCallback = pCallback;
break;
case HAL_SPDIFRX_CX_CPLT_CB_ID :
hspdif->CxCpltCallback = pCallback;
break;
case HAL_SPDIFRX_ERROR_CB_ID :
hspdif->ErrorCallback = pCallback;
break;
case HAL_SPDIFRX_MSPINIT_CB_ID :
hspdif->MspInitCallback = pCallback;
break;
case HAL_SPDIFRX_MSPDEINIT_CB_ID :
hspdif->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if(HAL_SPDIFRX_STATE_RESET == hspdif->State)
{
switch (CallbackID)
{
case HAL_SPDIFRX_MSPINIT_CB_ID :
hspdif->MspInitCallback = pCallback;
break;
case HAL_SPDIFRX_MSPDEINIT_CB_ID :
hspdif->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hspdif);
return status;
}
/**
* @brief Unregister a SPDIFRX Callback
* SPDIFRX callabck is redirected to the weak predefined callback
* @param hspdif SPDIFRX handle
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_SPDIFRX_RX_HALF_CB_ID SPDIFRX Data flow half completed callback ID
* @arg @ref HAL_SPDIFRX_RX_CPLT_CB_ID SPDIFRX Data flow completed callback ID
* @arg @ref HAL_SPDIFRX_CX_HALF_CB_ID SPDIFRX Control flow half completed callback ID
* @arg @ref HAL_SPDIFRX_CX_CPLT_CB_ID SPDIFRX Control flow completed callback ID
* @arg @ref HAL_SPDIFRX_ERROR_CB_ID SPDIFRX error callback ID
* @arg @ref HAL_SPDIFRX_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_SPDIFRX_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_UnRegisterCallback(SPDIFRX_HandleTypeDef *hspdif, HAL_SPDIFRX_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hspdif);
if(HAL_SPDIFRX_STATE_READY == hspdif->State)
{
switch (CallbackID)
{
case HAL_SPDIFRX_RX_HALF_CB_ID :
hspdif->RxHalfCpltCallback = HAL_SPDIFRX_RxHalfCpltCallback;
break;
case HAL_SPDIFRX_RX_CPLT_CB_ID :
hspdif->RxCpltCallback = HAL_SPDIFRX_RxCpltCallback;
break;
case HAL_SPDIFRX_CX_HALF_CB_ID :
hspdif->CxHalfCpltCallback = HAL_SPDIFRX_CxHalfCpltCallback;
break;
case HAL_SPDIFRX_CX_CPLT_CB_ID :
hspdif->CxCpltCallback = HAL_SPDIFRX_CxCpltCallback;
break;
case HAL_SPDIFRX_ERROR_CB_ID :
hspdif->ErrorCallback = HAL_SPDIFRX_ErrorCallback;
break;
default :
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if(HAL_SPDIFRX_STATE_RESET == hspdif->State)
{
switch (CallbackID)
{
case HAL_SPDIFRX_MSPINIT_CB_ID :
hspdif->MspInitCallback = HAL_SPDIFRX_MspInit; /* Legacy weak MspInit */
break;
case HAL_SPDIFRX_MSPDEINIT_CB_ID :
hspdif->MspDeInitCallback = HAL_SPDIFRX_MspDeInit; /* Legacy weak MspInit */
break;
default :
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hspdif);
return status;
}
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
/**
* @brief Set the SPDIFRX data format according to the specified parameters in the SPDIFRX_InitTypeDef.
* @param hspdif SPDIFRX handle
* @param sDataFormat SPDIFRX data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_SetDataFormat(SPDIFRX_HandleTypeDef *hspdif, SPDIFRX_SetDataFormatTypeDef sDataFormat)
{
uint32_t tmpreg;
/* Check the SPDIFRX handle allocation */
if(hspdif == NULL)
{
return HAL_ERROR;
}
/* Check the SPDIFRX parameters */
assert_param(IS_STEREO_MODE(sDataFormat.StereoMode));
assert_param(IS_SPDIFRX_DATA_FORMAT(sDataFormat.DataFormat));
assert_param(IS_PREAMBLE_TYPE_MASK(sDataFormat.PreambleTypeMask));
assert_param(IS_CHANNEL_STATUS_MASK(sDataFormat.ChannelStatusMask));
assert_param(IS_VALIDITY_MASK(sDataFormat.ValidityBitMask));
assert_param(IS_PARITY_ERROR_MASK(sDataFormat.ParityErrorMask));
/* Reset the old SPDIFRX CR configuration */
tmpreg = hspdif->Instance->CR;
if(((tmpreg & SPDIFRX_STATE_RCV) == SPDIFRX_STATE_RCV) &&
(((tmpreg & SPDIFRX_CR_DRFMT) != sDataFormat.DataFormat) ||
((tmpreg & SPDIFRX_CR_RXSTEO) != sDataFormat.StereoMode)))
{
return HAL_ERROR;
}
tmpreg &= ~(SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK |
SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK);
/* Configure the new data format */
tmpreg |= (sDataFormat.StereoMode |
sDataFormat.DataFormat |
sDataFormat.PreambleTypeMask |
sDataFormat.ChannelStatusMask |
sDataFormat.ValidityBitMask |
sDataFormat.ParityErrorMask);
hspdif->Instance->CR = tmpreg;
return HAL_OK;
}
/**
* @}
*/
/** @defgroup SPDIFRX_Exported_Functions_Group2 IO operation functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the SPDIFRX data
transfers.
(#) There is two mode of transfer:
(++) Blocking mode : The communication is performed in the polling mode.
The status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode : The communication is performed using Interrupts
or DMA. These functions return the status of the transfer start-up.
The end of the data processing will be indicated through the
dedicated SPDIFRX IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
(#) Blocking mode functions are :
(++) HAL_SPDIFRX_ReceiveDataFlow()
(++) HAL_SPDIFRX_ReceiveControlFlow()
(+@) Do not use blocking mode to receive both control and data flow at the same time.
(#) No-Blocking mode functions with Interrupt are :
(++) HAL_SPDIFRX_ReceiveControlFlow_IT()
(++) HAL_SPDIFRX_ReceiveDataFlow_IT()
(#) No-Blocking mode functions with DMA are :
(++) HAL_SPDIFRX_ReceiveControlFlow_DMA()
(++) HAL_SPDIFRX_ReceiveDataFlow_DMA()
(#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
(++) HAL_SPDIFRX_RxCpltCallback()
(++) HAL_SPDIFRX_CxCpltCallback()
@endverbatim
* @{
*/
/**
* @brief Receives an amount of data (Data Flow) in blocking mode.
* @param hspdif pointer to SPDIFRX_HandleTypeDef structure that contains
* the configuration information for SPDIFRX module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
uint16_t sizeCounter = Size;
uint32_t *pTmpBuf = pData;
if((pData == NULL ) || (Size == 0U))
{
return HAL_ERROR;
}
if(hspdif->State == HAL_SPDIFRX_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hspdif);
hspdif->State = HAL_SPDIFRX_STATE_BUSY;
/* Start synchronisation */
__HAL_SPDIFRX_SYNC(hspdif);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until SYNCD flag is set */
if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Start reception */
__HAL_SPDIFRX_RCV(hspdif);
/* Receive data flow */
while(sizeCounter > 0U)
{
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until RXNE flag is set */
if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
(*pTmpBuf) = hspdif->Instance->DR;
pTmpBuf++;
sizeCounter--;
}
/* SPDIFRX ready */
hspdif->State = HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives an amount of data (Control Flow) in blocking mode.
* @param hspdif pointer to a SPDIFRX_HandleTypeDef structure that contains
* the configuration information for SPDIFRX module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
uint16_t sizeCounter = Size;
uint32_t *pTmpBuf = pData;
if((pData == NULL ) || (Size == 0U))
{
return HAL_ERROR;
}
if(hspdif->State == HAL_SPDIFRX_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hspdif);
hspdif->State = HAL_SPDIFRX_STATE_BUSY;
/* Start synchronization */
__HAL_SPDIFRX_SYNC(hspdif);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until SYNCD flag is set */
if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Start reception */
__HAL_SPDIFRX_RCV(hspdif);
/* Receive control flow */
while(sizeCounter > 0U)
{
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until CSRNE flag is set */
if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_CSRNE, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
(*pTmpBuf) = hspdif->Instance->CSR;
pTmpBuf++;
sizeCounter--;
}
/* SPDIFRX ready */
hspdif->State = HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data (Data Flow) in non-blocking mode with Interrupt
* @param hspdif SPDIFRX handle
* @param pData a 32-bit pointer to the Receive data buffer.
* @param Size number of data sample to be received .
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size)
{
uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U);
const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State;
if((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_CX))
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspdif);
hspdif->pRxBuffPtr = pData;
hspdif->RxXferSize = Size;
hspdif->RxXferCount = Size;
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE;
/* Check if a receive process is ongoing or not */
hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX;
/* Enable the SPDIFRX PE Error Interrupt */
__HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
/* Enable the SPDIFRX OVR Error Interrupt */
__HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
/* Enable the SPDIFRX RXNE interrupt */
__HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_RXNE);
if((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV)
{
/* Start synchronization */
__HAL_SPDIFRX_SYNC(hspdif);
/* Wait until SYNCD flag is set */
do
{
if (count == 0U)
{
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE);
hspdif->State= HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_TIMEOUT;
}
count--;
} while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET);
/* Start reception */
__HAL_SPDIFRX_RCV(hspdif);
}
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data (Control Flow) with Interrupt
* @param hspdif SPDIFRX handle
* @param pData a 32-bit pointer to the Receive data buffer.
* @param Size number of data sample (Control Flow) to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size)
{
uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U);
const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State;
if((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_RX))
{
if((pData == NULL ) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspdif);
hspdif->pCsBuffPtr = pData;
hspdif->CsXferSize = Size;
hspdif->CsXferCount = Size;
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE;
/* Check if a receive process is ongoing or not */
hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX;
/* Enable the SPDIFRX PE Error Interrupt */
__HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
/* Enable the SPDIFRX OVR Error Interrupt */
__HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
/* Enable the SPDIFRX CSRNE interrupt */
__HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
if((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV)
{
/* Start synchronization */
__HAL_SPDIFRX_SYNC(hspdif);
/* Wait until SYNCD flag is set */
do
{
if (count == 0U)
{
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE);
hspdif->State= HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_TIMEOUT;
}
count--;
} while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET);
/* Start reception */
__HAL_SPDIFRX_RCV(hspdif);
}
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data (Data Flow) mode with DMA
* @param hspdif SPDIFRX handle
* @param pData a 32-bit pointer to the Receive data buffer.
* @param Size number of data sample to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size)
{
uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U);
const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State;
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
if((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_CX))
{
/* Process Locked */
__HAL_LOCK(hspdif);
hspdif->pRxBuffPtr = pData;
hspdif->RxXferSize = Size;
hspdif->RxXferCount = Size;
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE;
hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX;
/* Set the SPDIFRX Rx DMA Half transfer complete callback */
hspdif->hdmaDrRx->XferHalfCpltCallback = SPDIFRX_DMARxHalfCplt;
/* Set the SPDIFRX Rx DMA transfer complete callback */
hspdif->hdmaDrRx->XferCpltCallback = SPDIFRX_DMARxCplt;
/* Set the DMA error callback */
hspdif->hdmaDrRx->XferErrorCallback = SPDIFRX_DMAError;
/* Enable the DMA request */
if(HAL_DMA_Start_IT(hspdif->hdmaDrRx, (uint32_t)&hspdif->Instance->DR, (uint32_t)hspdif->pRxBuffPtr, Size) != HAL_OK)
{
/* Set SPDIFRX error */
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_DMA;
/* Set SPDIFRX state */
hspdif->State = HAL_SPDIFRX_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_ERROR;
}
/* Enable RXDMAEN bit in SPDIFRX CR register for data flow reception*/
hspdif->Instance->CR |= SPDIFRX_CR_RXDMAEN;
if((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV)
{
/* Start synchronization */
__HAL_SPDIFRX_SYNC(hspdif);
/* Wait until SYNCD flag is set */
do
{
if (count == 0U)
{
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE);
hspdif->State= HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_TIMEOUT;
}
count--;
} while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET);
/* Start reception */
__HAL_SPDIFRX_RCV(hspdif);
}
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data (Control Flow) with DMA
* @param hspdif SPDIFRX handle
* @param pData a 32-bit pointer to the Receive data buffer.
* @param Size number of data (Control Flow) sample to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size)
{
uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U);
const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State;
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
if((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_RX))
{
hspdif->pCsBuffPtr = pData;
hspdif->CsXferSize = Size;
hspdif->CsXferCount = Size;
/* Process Locked */
__HAL_LOCK(hspdif);
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE;
hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX;
/* Set the SPDIFRX Rx DMA Half transfer complete callback */
hspdif->hdmaCsRx->XferHalfCpltCallback = SPDIFRX_DMACxHalfCplt;
/* Set the SPDIFRX Rx DMA transfer complete callback */
hspdif->hdmaCsRx->XferCpltCallback = SPDIFRX_DMACxCplt;
/* Set the DMA error callback */
hspdif->hdmaCsRx->XferErrorCallback = SPDIFRX_DMAError;
/* Enable the DMA request */
if(HAL_DMA_Start_IT(hspdif->hdmaCsRx, (uint32_t)&hspdif->Instance->CSR, (uint32_t)hspdif->pCsBuffPtr, Size) != HAL_OK)
{
/* Set SPDIFRX error */
hspdif->ErrorCode = HAL_SPDIFRX_ERROR_DMA;
/* Set SPDIFRX state */
hspdif->State = HAL_SPDIFRX_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_ERROR;
}
/* Enable CBDMAEN bit in SPDIFRX CR register for control flow reception*/
hspdif->Instance->CR |= SPDIFRX_CR_CBDMAEN;
if((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV)
{
/* Start synchronization */
__HAL_SPDIFRX_SYNC(hspdif);
/* Wait until SYNCD flag is set */
do
{
if (count == 0U)
{
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE);
hspdif->State= HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_TIMEOUT;
}
count--;
} while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET);
/* Start reception */
__HAL_SPDIFRX_RCV(hspdif);
}
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief stop the audio stream receive from the Media.
* @param hspdif SPDIFRX handle
* @retval None
*/
HAL_StatusTypeDef HAL_SPDIFRX_DMAStop(SPDIFRX_HandleTypeDef *hspdif)
{
/* Process Locked */
__HAL_LOCK(hspdif);
/* Disable the SPDIFRX DMA requests */
hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN);
hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN);
/* Disable the SPDIFRX DMA channel */
__HAL_DMA_DISABLE(hspdif->hdmaDrRx);
__HAL_DMA_DISABLE(hspdif->hdmaCsRx);
/* Disable SPDIFRX peripheral */
__HAL_SPDIFRX_IDLE(hspdif);
hspdif->State = HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_OK;
}
/**
* @brief This function handles SPDIFRX interrupt request.
* @param hspdif SPDIFRX handle
* @retval HAL status
*/
void HAL_SPDIFRX_IRQHandler(SPDIFRX_HandleTypeDef *hspdif)
{
uint32_t itFlag = hspdif->Instance->SR;
uint32_t itSource = hspdif->Instance->IMR;
/* SPDIFRX in mode Data Flow Reception */
if(((itFlag & SPDIFRX_FLAG_RXNE) == SPDIFRX_FLAG_RXNE) && ((itSource & SPDIFRX_IT_RXNE) == SPDIFRX_IT_RXNE))
{
__HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_RXNE);
SPDIFRX_ReceiveDataFlow_IT(hspdif);
}
/* SPDIFRX in mode Control Flow Reception */
if(((itFlag & SPDIFRX_FLAG_CSRNE) == SPDIFRX_FLAG_CSRNE) && ((itSource & SPDIFRX_IT_CSRNE) == SPDIFRX_IT_CSRNE))
{
__HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_CSRNE);
SPDIFRX_ReceiveControlFlow_IT(hspdif);
}
/* SPDIFRX Overrun error interrupt occurred */
if(((itFlag & SPDIFRX_FLAG_OVR) == SPDIFRX_FLAG_OVR) && ((itSource & SPDIFRX_IT_OVRIE) == SPDIFRX_IT_OVRIE))
{
__HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_OVRIE);
/* Change the SPDIFRX error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_OVR;
/* the transfer is not stopped */
HAL_SPDIFRX_ErrorCallback(hspdif);
}
/* SPDIFRX Parity error interrupt occurred */
if(((itFlag & SPDIFRX_FLAG_PERR) == SPDIFRX_FLAG_PERR) && ((itSource & SPDIFRX_IT_PERRIE) == SPDIFRX_IT_PERRIE))
{
__HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_PERRIE);
/* Change the SPDIFRX error code */
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_PE;
/* the transfer is not stopped */
HAL_SPDIFRX_ErrorCallback(hspdif);
}
}
/**
* @brief Rx Transfer (Data flow) half completed callbacks
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_RxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer (Data flow) completed callbacks
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_RxCpltCallback(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx (Control flow) Transfer half completed callbacks
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_CxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer (Control flow) completed callbacks
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_CxCpltCallback(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief SPDIFRX error callbacks
* @param hspdif SPDIFRX handle
* @retval None
*/
__weak void HAL_SPDIFRX_ErrorCallback(SPDIFRX_HandleTypeDef *hspdif)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspdif);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SPDIFRX_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup SPDIFRX_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection permit to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the SPDIFRX state
* @param hspdif SPDIFRX handle
* @retval HAL state
*/
HAL_SPDIFRX_StateTypeDef HAL_SPDIFRX_GetState(SPDIFRX_HandleTypeDef const * const hspdif)
{
return hspdif->State;
}
/**
* @brief Return the SPDIFRX error code
* @param hspdif SPDIFRX handle
* @retval SPDIFRX Error Code
*/
uint32_t HAL_SPDIFRX_GetError(SPDIFRX_HandleTypeDef const * const hspdif)
{
return hspdif->ErrorCode;
}
/**
* @}
*/
/**
* @brief DMA SPDIFRX receive process (Data flow) complete callback
* @param hdma DMA handle
* @retval None
*/
static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma)
{
SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Disable Rx DMA Request */
if(hdma->Init.Mode != DMA_CIRCULAR)
{
hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN);
hspdif->RxXferCount = 0;
hspdif->State = HAL_SPDIFRX_STATE_READY;
}
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
hspdif->RxCpltCallback(hspdif);
#else
HAL_SPDIFRX_RxCpltCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPDIFRX receive process (Data flow) half complete callback
* @param hdma DMA handle
* @retval None
*/
static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
SPDIFRX_HandleTypeDef* hspdif = (SPDIFRX_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
hspdif->RxHalfCpltCallback(hspdif);
#else
HAL_SPDIFRX_RxHalfCpltCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPDIFRX receive process (Control flow) complete callback
* @param hdma DMA handle
* @retval None
*/
static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma)
{
SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Disable Cb DMA Request */
hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN);
hspdif->CsXferCount = 0;
hspdif->State = HAL_SPDIFRX_STATE_READY;
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
hspdif->CxCpltCallback(hspdif);
#else
HAL_SPDIFRX_CxCpltCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPDIFRX receive process (Control flow) half complete callback
* @param hdma DMA handle
* @retval None
*/
static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma)
{
SPDIFRX_HandleTypeDef* hspdif = (SPDIFRX_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
hspdif->CxHalfCpltCallback(hspdif);
#else
HAL_SPDIFRX_CxHalfCpltCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPDIFRX communication error callback
* @param hdma DMA handle
* @retval None
*/
static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma)
{
SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Disable Rx and Cb DMA Request */
hspdif->Instance->CR &= (uint16_t)(~(SPDIFRX_CR_RXDMAEN | SPDIFRX_CR_CBDMAEN));
hspdif->RxXferCount = 0;
hspdif->State= HAL_SPDIFRX_STATE_READY;
/* Set the error code and execute error callback*/
hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_DMA;
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
/* The transfer is not stopped */
hspdif->ErrorCallback(hspdif);
#else
/* The transfer is not stopped */
HAL_SPDIFRX_ErrorCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
/**
* @brief Receive an amount of data (Data Flow) with Interrupt
* @param hspdif SPDIFRX handle
* @retval None
*/
static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif)
{
/* Receive data */
(*hspdif->pRxBuffPtr) = hspdif->Instance->DR;
hspdif->pRxBuffPtr++;
hspdif->RxXferCount--;
if(hspdif->RxXferCount == 0U)
{
/* Disable RXNE/PE and OVR interrupts */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE | SPDIFRX_IT_PERRIE | SPDIFRX_IT_RXNE);
hspdif->State = HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
hspdif->RxCpltCallback(hspdif);
#else
HAL_SPDIFRX_RxCpltCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
}
/**
* @brief Receive an amount of data (Control Flow) with Interrupt
* @param hspdif SPDIFRX handle
* @retval None
*/
static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif)
{
/* Receive data */
(*hspdif->pCsBuffPtr) = hspdif->Instance->CSR;
hspdif->pCsBuffPtr++;
hspdif->CsXferCount--;
if(hspdif->CsXferCount == 0U)
{
/* Disable CSRNE interrupt */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
hspdif->State = HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
#if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1)
hspdif->CxCpltCallback(hspdif);
#else
HAL_SPDIFRX_CxCpltCallback(hspdif);
#endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */
}
}
/**
* @brief This function handles SPDIFRX Communication Timeout.
* @param hspdif SPDIFRX handle
* @param Flag Flag checked
* @param Status Value of the flag expected
* @param Timeout Duration of the timeout
* @param tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t tickstart)
{
/* Wait until flag is set */
while(__HAL_SPDIFRX_GET_FLAG(hspdif, Flag) == Status)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if(((HAL_GetTick() - tickstart ) > Timeout) || (Timeout == 0U))
{
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE);
__HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE);
hspdif->State= HAL_SPDIFRX_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspdif);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @}
*/
#endif /* SPDIFRX */
#endif /* HAL_SPDIFRX_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/