1
0
OS-Lab-Scheduler/simulator.c
florian.sauzeat fb90cbf14a Try
2024-10-14 17:20:29 +02:00

283 lines
8.2 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define RR_QUANTUM 2
#define CNTXT_SWITCH 1
enum pstate {
WAITING,
READY,
FINISHED
};
struct pinfo {
int id;
int arrival_time;
int execution_time;
int priority;
int wait_time;
int turnaround_time;
int remaining_time;
enum pstate state;
struct pinfo * next_pinfo;
};
struct perf_info {
int total_time;
int total_nr_ctxt_switch;
int total_time_ctxt_switch;
};
void print_perf(struct perf_info * perf) {
printf("Total time: %d\n", perf->total_time);
printf("Total number of context switches: %d\n", perf->total_nr_ctxt_switch);
printf("Total time spent on context switching: %d\n", perf->total_time_ctxt_switch);
}
void print_pinfo(struct pinfo * info) {
printf("<Process {\n");
printf(" PID: %d\n", info->id);
printf(" Arrival time: %d\n", info->arrival_time);
printf(" Execution time: %d\n", info->execution_time);
printf(" Priority: %d\n", info->priority);
printf(" Wait time: %d\n", info->wait_time);
printf(" Turnaround time: %d\n", info->turnaround_time);
printf(" Remaining time: %d\n", info->remaining_time);
printf(" NEXT -> %p\n", info->next_pinfo);
printf("}>\n");
}
void print_processes(struct pinfo * processes) {
while (processes != NULL) {
print_pinfo(processes);
processes = processes->next_pinfo;
}
}
struct pinfo * create_process(int id, int arrival_time, int execution_time, int priority) {
struct pinfo * info = malloc(sizeof(struct pinfo));
info->id = id;
info->arrival_time = arrival_time;
info->execution_time = execution_time;
info->priority = priority;
info->wait_time = 0;
info->turnaround_time = 0;
info->remaining_time = execution_time;
info->state = WAITING;
info->next_pinfo = NULL;
return info;
}
struct perf_info schedule_FCFS(struct pinfo * processes) {
int current_time = 0;
struct pinfo * process = processes;
struct perf_info perf = {0, 0, 0};
while (process != NULL) {
int wait_time = current_time - process->arrival_time;
if (wait_time < 0) {
wait_time = 0;
}
process->wait_time = wait_time;
process->turnaround_time = process->execution_time + process->wait_time;
current_time = process->arrival_time + process->turnaround_time;
process = process->next_pinfo;
}
perf.total_time = current_time;
return perf;
}
struct pinfo * read_file() {
FILE * file = fopen("tasks.csv", "r");
unsigned long buf_size = sizeof(char) * 64;
char * line = (char *) malloc(buf_size);
char * pid_str;
char * arrival_str;
char * execution_str;
char * prio_str;
struct pinfo * first = NULL;
struct pinfo * last = NULL;
struct pinfo * process;
while (fgets(line, buf_size, file)) {
pid_str = strtok(line, " ");
arrival_str = strtok(NULL, " ");
execution_str = strtok(NULL, " ");
prio_str = strtok(NULL, " ");
process = create_process(
atoi(pid_str),
atoi(arrival_str),
atoi(execution_str),
atoi(prio_str)
);
// If linked list not initialized
if (first == NULL) {
first = process;
}
// If there is an element in list
if (last != NULL) {
last->next_pinfo = process;
}
last = process;
print_pinfo(process);
}
free(line);
fclose(file);
return first;
}
void free_processes(struct pinfo * next) {
struct pinfo * cur;
while (next != NULL) {
cur = next;
next = cur->next_pinfo;
free(cur);
}
}
void write_file(struct pinfo * process, struct perf_info * perf) {
FILE *myStream_execution = fopen("execution2.csv", "w");
FILE *myStream_performance = fopen("performance2.csv", "w");
if (myStream_execution == NULL || myStream_performance == NULL) {
perror("Erreur à l'ouverture des fichiers");
return;
}
while (process != NULL) {
fprintf(myStream_execution, "%d,%d,%d,%d\n", // Ajout de la colonne des préemptions
process->id,
process->turnaround_time,
process->wait_time,
process->execution_time - process->remaining_time); // Nombre de préemptions
process = process->next_pinfo;
}
fclose(myStream_execution);
fprintf(myStream_performance, "%d,%d,%d\n",
perf->total_time,
perf->total_nr_ctxt_switch,
perf->total_time_ctxt_switch);
fclose(myStream_performance);
}
struct perf_info schedule_RR(struct pinfo * processes) {
int current_time = 0; // Temps actuel
int context_switches = 0; // Nombre de changements de contexte
struct perf_info perf = {0, 0, 0};
struct pinfo * queue = processes; // File d'attente de processus
struct pinfo * temp; // Variable temporaire pour itérer
while (1) {
int all_done = 1; // Vérifier si tous les processus sont terminés
// Itérer sur les processus dans la queue
temp = queue;
while (temp != NULL) {
// Vérifiez si le processus a encore du temps restant
if (temp->remaining_time > 0) {
all_done = 0; // Il y a au moins un processus qui n'est pas terminé
// Si le temps actuel est inférieur au temps d'arrivée
if (current_time < temp->arrival_time) {
current_time = temp->arrival_time; // Mettez à jour le temps
}
// Exécutez le processus pendant le quantum
if (temp->remaining_time > RR_QUANTUM) {
current_time += RR_QUANTUM; // Ajoute le quantum au temps
temp->remaining_time -= RR_QUANTUM; // Diminue le temps restant
context_switches++; // Compter le changement de contexte
} else {
// Le processus se termine ici
current_time += temp->remaining_time; // Ajoutez le temps restant à current_time
temp->turnaround_time = current_time - temp->arrival_time; // Calculer le TAT
temp->wait_time += (temp->turnaround_time - temp->execution_time); // Calculer le WT
temp->remaining_time = 0; // Le processus est terminé
temp->state = FINISHED; // Marquez comme terminé
}
}
temp = temp->next_pinfo; // Passer au processus suivant
}
// Réinitialiser la file d'attente
temp = processes; // Revenir au début de la liste
struct pinfo * last = NULL; // Pour maintenir la fin de la queue
// Créer une nouvelle file d'attente
while (temp != NULL) {
// Ne pas ajouter les processus terminés à la nouvelle queue
if (temp->remaining_time > 0) {
if (last == NULL) {
queue = temp; // Premier processus dans la nouvelle queue
} else {
last->next_pinfo = temp; // Ajouter à la fin
}
last = temp; // Mettre à jour le dernier élément de la queue
}
temp = temp->next_pinfo; // Passer au processus suivant
}
if (last != NULL) {
last->next_pinfo = NULL; // Terminer la liste
}
// Si tous les processus sont terminés, sortez de la boucle
if (all_done) {
break;
}
}
// Mise à jour des statistiques de performance
perf.total_time = current_time; // Total du temps écoulé
perf.total_nr_ctxt_switch = context_switches; // Total des changements de contexte
perf.total_time_ctxt_switch = context_switches * CNTXT_SWITCH; // Temps total pour les changements de contexte
return perf; // Retournez les performances
}
int main() {
struct pinfo * processes = read_file();
//struct perf_info perf = schedule_FCFS(processes);
struct perf_info perf = schedule_RR(processes);
write_file(processes, &perf);
//print_processes(processes);
//print_perf(&perf);
free_processes(processes);
return 0;
}