ADD tests for speedometer and sensor-device

This commit is contained in:
fastium 2024-10-29 16:16:30 +01:00
parent 0d4e603a64
commit db2d5308bc
2 changed files with 423 additions and 0 deletions

View File

@ -0,0 +1,69 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file main.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Bike computer test suite: sensor device
*
* @date 2023-08-26
* @version 0.1.0
***************************************************************************/
#include "greentea-client/test_env.h"
#include "hdc1000.hpp"
#include "mbed.h"
#include "sensor_device.hpp"
#include "unity/unity.h"
#include "utest/utest.h"
using namespace utest::v1;
// test_hdc1000 test handler function
static control_t test_sensor_device(const size_t call_count) {
// create the SensorDevice instance
bike_computer::SensorDevice sensorDevice;
bool rc = sensorDevice.init();
TEST_ASSERT_TRUE(rc);
float temperature = sensorDevice.readTemperature();
static constexpr float kTemperatureRange = 20.0f;
static constexpr float kMeanTemperature = 15.0f;
TEST_ASSERT_FLOAT_WITHIN(kTemperatureRange, kMeanTemperature, temperature);
float humidity = sensorDevice.readHumidity();
static constexpr float kHumidityRange = 40.0f;
static constexpr float kMeanHumidity = 50.0f;
TEST_ASSERT_FLOAT_WITHIN(kHumidityRange, kMeanHumidity, humidity);
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
static utest::v1::status_t greentea_setup(const size_t number_of_cases) {
// Here, we specify the timeout (60s) and the host test (a built-in host test or the
// name of our Python file)
GREENTEA_SETUP(60, "default_auto");
return greentea_test_setup_handler(number_of_cases);
}
// List of test cases in this file
static Case cases[] = {Case("test sensor device", test_sensor_device)};
static Specification specification(greentea_setup, cases);
int main() { return !Harness::run(specification); }

View File

@ -0,0 +1,354 @@
// Copyright 2022 Haute école d'ingénierie et d'architecture de Fribourg
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/****************************************************************************
* @file main.cpp
* @author Serge Ayer <serge.ayer@hefr.ch>
*
* @brief Bike computer test suite: speedometer device
*
* @date 2023-08-26
* @version 0.1.0
***************************************************************************/
#include <chrono>
#include "common/constants.hpp"
#include "common/speedometer.hpp"
#include "greentea-client/test_env.h"
#include "mbed.h"
#include "static_scheduling/gear_device.hpp"
#include "unity/unity.h"
#include "utest/utest.h"
using namespace utest::v1;
// allow for 0.1 km/h difference
static constexpr float kAllowedSpeedDelta = 0.1f;
// allow for 1m difference
static constexpr float kAllowedDistanceDelta = 1.0f / 1000.0;
// function called by test handler functions for verifying the current speed
void check_current_speed(const std::chrono::milliseconds& pedalRotationTime,
uint8_t traySize,
uint8_t gearSize,
float wheelCircumference,
float currentSpeed) {
// compute the number of pedal rotation per hour
uint32_t milliSecondsPerHour = 1000 * 3600;
float pedalRotationsPerHour = static_cast<float>(milliSecondsPerHour) /
static_cast<float>(pedalRotationTime.count());
// compute the expected speed in km / h
// first compute the distance in meter for each pedal turn
float trayGearRatio = static_cast<float>(traySize) / static_cast<float>(gearSize);
float distancePerPedalTurn = trayGearRatio * wheelCircumference;
float expectedSpeed = (distancePerPedalTurn / 1000.0f) * pedalRotationsPerHour;
printf(" Expected speed is %f, current speed is %f\n", expectedSpeed, currentSpeed);
TEST_ASSERT_FLOAT_WITHIN(kAllowedSpeedDelta, expectedSpeed, currentSpeed);
}
// compute the traveled distance for a time interval
float compute_distance(const std::chrono::milliseconds& pedalRotationTime,
uint8_t traySize,
uint8_t gearSize,
float wheelCircumference,
const std::chrono::milliseconds& travelTime) {
// compute the number of pedal rotation during travel time
// both times are expressed in ms
float pedalRotations = static_cast<float>(travelTime.count()) /
static_cast<float>(pedalRotationTime.count());
// compute the distance in meter for each pedal turn
float trayGearRatio = static_cast<float>(traySize) / static_cast<float>(gearSize);
float distancePerPedalTurn = trayGearRatio * wheelCircumference;
// distancePerPedalTurn is expressed in m, divide per 1000 for a distance in km
return (distancePerPedalTurn * pedalRotations) / 1000.0;
}
// function called by test handler functions for verifying the distance traveled
void check_distance(const std::chrono::milliseconds& pedalRotationTime,
uint8_t traySize,
uint8_t gearSize,
float wheelCircumference,
const std::chrono::milliseconds& travelTime,
float distance) {
// distancePerPedalTurn is expressed in m, divide per 1000 for a distance in km
float expectedDistance = compute_distance(
pedalRotationTime, traySize, gearSize, wheelCircumference, travelTime);
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
distance);
TEST_ASSERT_FLOAT_WITHIN(kAllowedDistanceDelta, expectedDistance, distance);
}
// test the speedometer by modifying the gear
static control_t test_gear_size(const size_t call_count) {
// create a timer
Timer timer;
// start the timer
timer.start();
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// get speedometer constant values (for this test)
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
const auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
for (uint8_t gearSize = bike_computer::kMinGearSize;
gearSize <= bike_computer::kMaxGearSize;
gearSize++) {
// set the gear
printf("Testing gear size %d\n", gearSize);
speedometer.setGearSize(gearSize);
// get the current speed
auto currentSpeed = speedometer.getCurrentSpeed();
// check the speed against the expected one
check_current_speed(
pedalRotationTime, traySize, gearSize, wheelCircumference, currentSpeed);
}
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
// test the speedometer by modifying the pedal rotation speed
static control_t test_rotation_speed(const size_t call_count) {
// create a timer
Timer timer;
// start the timer
timer.start();
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// set the gear size
speedometer.setGearSize(bike_computer::kMaxGearSize);
// get speedometer constant values
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
const auto gearSize = speedometer.getGearSize();
// first test increasing rotation speed (decreasing rotation time)
auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
while (pedalRotationTime > bike_computer::kMinPedalRotationTime) {
// decrease the pedal rotation time
pedalRotationTime -= bike_computer::kDeltaPedalRotationTime;
speedometer.setCurrentRotationTime(pedalRotationTime);
// get the current speed
const auto currentSpeed = speedometer.getCurrentSpeed();
// check the speed against the expected one
check_current_speed(
pedalRotationTime, traySize, gearSize, wheelCircumference, currentSpeed);
}
// second test decreasing rotation speed (increasing rotation time)
pedalRotationTime = speedometer.getCurrentPedalRotationTime();
while (pedalRotationTime < bike_computer::kMaxPedalRotationTime) {
// increase the pedal rotation time
pedalRotationTime += bike_computer::kDeltaPedalRotationTime;
speedometer.setCurrentRotationTime(pedalRotationTime);
// get the current speed
const auto currentSpeed = speedometer.getCurrentSpeed();
// check the speed against the expected one
check_current_speed(
pedalRotationTime, traySize, gearSize, wheelCircumference, currentSpeed);
}
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
// test the speedometer by modifying the pedal rotation speed
static control_t test_distance(const size_t call_count) {
// create a timer
Timer timer;
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// set the gear size
speedometer.setGearSize(bike_computer::kMaxGearSize);
// get speedometer constant values
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
auto gearSize = speedometer.getGearSize();
auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
// test different travel times
const std::chrono::milliseconds travelTimes[] = {500ms, 1000ms, 5s, 10s};
const uint8_t nbrOfTravelTimes = sizeof(travelTimes) / sizeof(travelTimes[0]);
// start the timer (for simulating bike start)
timer.start();
// first check travel distance without changing gear and rotation speed
std::chrono::milliseconds totalTravelTime = std::chrono::milliseconds::zero();
for (uint8_t index = 0; index < nbrOfTravelTimes; index++) {
// run for the travel time and get the distance
ThisThread::sleep_for(travelTimes[index]);
// get the distance traveled
const auto distance = speedometer.getDistance();
// accumulate travel time
totalTravelTime += travelTimes[index];
// check the distance vs the expected one
check_distance(pedalRotationTime,
traySize,
gearSize,
wheelCircumference,
totalTravelTime,
distance);
}
// now change gear at each time interval
auto expectedDistance = speedometer.getDistance();
for (uint8_t index = 0; index < nbrOfTravelTimes; index++) {
// update the gear size
gearSize++;
speedometer.setGearSize(gearSize);
// run for the travel time and get the distance
ThisThread::sleep_for(travelTimes[index]);
// compute the expected distance for this time segment
float distance = compute_distance(pedalRotationTime,
traySize,
gearSize,
wheelCircumference,
travelTimes[index]);
expectedDistance += distance;
// get the distance traveled
const auto traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(
kAllowedDistanceDelta, expectedDistance, traveledDistance);
}
// now change rotation speed at each time interval
expectedDistance = speedometer.getDistance();
for (uint8_t index = 0; index < nbrOfTravelTimes; index++) {
// update the rotation speed
pedalRotationTime += bike_computer::kDeltaPedalRotationTime;
speedometer.setCurrentRotationTime(pedalRotationTime);
// run for the travel time and get the distance
ThisThread::sleep_for(travelTimes[index]);
// compute the expected distance for this time segment
float distance = compute_distance(pedalRotationTime,
traySize,
gearSize,
wheelCircumference,
travelTimes[index]);
expectedDistance += distance;
// get the distance traveled
const auto traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(
kAllowedDistanceDelta, expectedDistance, traveledDistance);
}
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
// test the speedometer by modifying the pedal rotation speed
static control_t test_reset(const size_t call_count) {
// create a timer instance
Timer timer;
// create a speedometer instance
bike_computer::Speedometer speedometer(timer);
// set the gear size
speedometer.setGearSize(bike_computer::kMinGearSize);
// get speedometer constant values
const auto traySize = speedometer.getTraySize();
const auto wheelCircumference = speedometer.getWheelCircumference();
const auto gearSize = speedometer.getGearSize();
const auto pedalRotationTime = speedometer.getCurrentPedalRotationTime();
// start the timer (for simulating bike start)
timer.start();
// travel for 1 second
const auto travelTime = 1000ms;
ThisThread::sleep_for(travelTime);
// check the expected distaance traveled
const auto expectedDistance = compute_distance(
pedalRotationTime, traySize, gearSize, wheelCircumference, travelTime);
// get the distance traveled
auto traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n",
expectedDistance,
traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(kAllowedDistanceDelta, expectedDistance, traveledDistance);
// reset the speedometer
speedometer.reset();
// traveled distance should now be zero
traveledDistance = speedometer.getDistance();
printf(" Expected distance is %f, current distance is %f\n", 0.0f, traveledDistance);
TEST_ASSERT_FLOAT_WITHIN(kAllowedDistanceDelta, 0.0f, traveledDistance);
// execute the test only once and move to the next one, without waiting
return CaseNext;
}
static utest::v1::status_t greentea_setup(const size_t number_of_cases) {
// Here, we specify the timeout (60s) and the host test (a built-in host test or the
// name of our Python file)
GREENTEA_SETUP(180, "default_auto");
return greentea_test_setup_handler(number_of_cases);
}
// List of test cases in this file
static Case cases[] = {
Case("test speedometer gear size change", test_gear_size),
Case("test speedometer rotation speed change", test_rotation_speed),
Case("test speedometer distance", test_distance),
Case("test speedometer reset", test_reset)};
static Specification specification(greentea_setup, cases);
int main() { return !Harness::run(specification); }