Archived
1
0

Initial commit

This commit is contained in:
github-classroom[bot]
2024-02-23 13:01:05 +00:00
committed by GitHub
commit d212040c30
1914 changed files with 1290006 additions and 0 deletions

View File

@@ -0,0 +1,24 @@
ARCHITECTURE RTL OF aluBOpSelector IS
BEGIN
selectDataSource: process(
registerFileSel, registerFileIn,
scratchpadSel, spadIn,
portInSel, portIn,
instrDataSel, instrData
)
begin
if registerFileSel = '1' then
opB <= registerFileIn;
elsif scratchpadSel = '1' then
opB <= spadIn;
elsif portInSel = '1' then
opB <= portIn;
elsif instrDataSel = '1' then
opB <= instrData;
else
opB <= (others => '-');
end if;
end process selectDataSource;
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,113 @@
ARCHITECTURE RTL OF alu IS
signal aluCodeInt: unsigned(aluCode'range);
signal aArith: signed(opA'high+1 downto 0);
signal bArith: signed(opA'high+1 downto 0);
signal cInArith: signed(1 downto 0);
signal cInShift: std_ulogic;
signal yArith: signed(aluOut'high+1 downto 0);
signal aluOutInt: signed(aluOut'range);
BEGIN
------------------------------------------------------------------------------
-- clear aluCode don't care LSB for shifts
aluCodeInt(aluCode'high downto 1) <= unsigned(aluCode(aluCode'high downto 1));
cleanupLsb: process(aluCode)
begin
if aluCode(aluCode'high) = '1' then
aluCodeInt(0) <= '0';
else
aluCodeInt(0) <= aluCode(0);
end if;
end process cleanupLsb;
------------------------------------------------------------------------------
-- values for arithmetic operations
aArith <= signed(resize(unsigned(opA), aArith'length));
bArith <= signed(resize(unsigned(opB), bArith'length));
cInArith <= (0 => cIn, others => '0');
process(aluCode, cIn, opA)
begin
case aluCode(2 downto 1) is
when "00" => cInShift <= cIn;
when "01" => cInShift <= opA(opA'high);
when "10" => cInShift <= opA(opA'low);
when "11" => cInShift <= aluCode(0);
when others => cInShift <= '-';
end case;
end process;
------------------------------------------------------------------------------
-- alu operations
aluOperation: process(
aluCodeInt,
opA, opB,
aArith, bArith, cInArith,
cInShift,
yArith, aluOutInt
)
variable xorAcc: std_ulogic;
begin
yArith <= (others => '-');
cOut <= '-';
aluOutInt <= (others => '-');
case to_integer(aluCodeInt) is
when 0 => -- LOAD sX, kk
aluOutInt <= opB;
when 2 => -- INPUT sX, pp
aluOutInt <= opB;
when 3 => -- FETCH sX, ss
aluOutInt <= opB;
when 5 => -- AND sX, kk
aluOutInt <= opA and opB;
cOut <= '0';
when 6 => -- OR sX, kk
aluOutInt <= opA or opB;
cOut <= '0';
when 7 => -- XOR sX, kk
aluOutInt <= opA xor opB;
cOut <= '0';
when 9 => -- TEST sX, kk
aluOutInt <= opA and opB;
xorAcc := '0';
for index in aluOutInt'range loop
xorAcc := xorAcc xor aluOutInt(index);
end loop;
cOut <= xorAcc;
when 10 => -- COMPARE sX, kk
yArith <= aArith - bArith;
aluOutInt <= yArith(aluOut'range);
cOut <= yArith(yArith'high);
when 12 => -- ADD sX, kk
yArith <= aArith + bArith;
aluOutInt <= yArith(aluOut'range);
cOut <= yArith(yArith'high);
when 13 => -- ADDCY sX, kk
yArith <= (aArith + bArith) + cInArith;
aluOutInt <= yArith(aluOut'range);
cOut <= yArith(yArith'high);
when 14 => -- SUB sX, kk
yArith <= aArith - bArith;
aluOutInt <= yArith(aluOut'range);
cOut <= yArith(yArith'high);
when 15 => -- SUBCY sX, kk
yArith <= (aArith - bArith) - cInArith;
aluOutInt <= yArith(aluOut'range);
cOut <= yArith(yArith'high);
when 16 to 23 => -- SL sX
aluOutInt <= opA(opA'high-1 downto 0) & cInShift;
cOut <= opA(opA'high);
when 24 to 31 => -- SR sX
aluOutInt <= cInShift & opA(opA'high downto 1);
cOut <= opA(0);
when others =>
aluOutInt <= (others => '-');
end case;
end process aluOperation;
aluOut <= aluOutInt;
zero <= '1' when aluOutInt = 0 else '0';
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,40 @@
ARCHITECTURE RTL OF branchStack IS
subtype progCounterType is unsigned(progCounter'range);
type progCounterArrayType is array (0 to 2**stackPointerBitNb) of progCounterType;
signal progCounterArray : progCounterArrayType;
signal writePointer : unsigned(stackPointerBitNb-1 downto 0);
signal readPointer : unsigned(stackPointerBitNb-1 downto 0);
BEGIN
------------------------------------------------------------------------------
-- stack pointers
updateStackPointer: process(reset, clock)
begin
if reset = '1' then
writePointer <= (others => '0');
elsif rising_edge(clock) then
if storePC = '1' then
writePointer <= writePointer + 1;
elsif prevPC = '1' then
writePointer <= writePointer - 1;
end if;
end if;
end process updateStackPointer;
readPointer <= writePointer - 1;
------------------------------------------------------------------------------
-- program counters stack
updateStack: process(reset, clock)
begin
if rising_edge(clock) then
if storePc = '1' then
progCounterArray(to_integer(writePointer)) <= progCounter;
end if;
storedProgCounter <= progCounterArray(to_integer(readPointer));
end if;
end process updateStack;
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,236 @@
ARCHITECTURE RTL OF controller IS
signal en1, enInt: std_ulogic;
constant opCodeLength : integer := 5;
subtype opCodeType is std_ulogic_vector(opCodeLength-1 downto 0);
constant opLoad : opCodeType := "00000";
constant opInput : opCodeType := "00010";
constant opFetch : opCodeType := "00011";
constant opAnd : opCodeType := "00101";
constant opOr : opCodeType := "00110";
constant opXor : opCodeType := "00111";
constant opTest : opCodeType := "01001";
constant opComp : opCodeType := "01010";
constant opAdd : opCodeType := "01100";
constant opAddCy : opCodeType := "01101";
constant opSub : opCodeType := "01110";
constant opSubCy : opCodeType := "01111";
constant opShRot : opCodeType := "10000";
constant opRet : opCodeType := "10101";
constant opOutput: opCodeType := "10110";
constant opStore : opCodeType := "10111";
constant opCall : opCodeType := "11000";
constant opJump : opCodeType := "11010";
constant opIntF : opCodeType := "11110";
constant branchConditionLength : integer := 3;
subtype branchConditionType is std_ulogic_vector(branchConditionLength-1 downto 0);
constant brAw : branchConditionType := "000";
constant brZ : branchConditionType := "100";
constant brNZ : branchConditionType := "101";
constant brC : branchConditionType := "110";
constant brNC : branchConditionType := "111";
signal aluOpSel: std_ulogic;
signal regWriteEn: std_ulogic;
signal flagsEn, flagsEnable: std_ulogic;
signal carrySaved: std_ulogic;
signal zeroSaved: std_ulogic;
signal branchEnable1, branchEnable: std_ulogic;
signal discardOpCode: std_ulogic;
signal updateIntFlag: std_ulogic;
BEGIN
------------------------------------------------------------------------------
-- Enable signal
buildEnable: process(reset, clock)
begin
if reset = '1' then
en1 <= '0';
elsif rising_edge(clock) then
en1 <= '1';
end if;
end process buildEnable;
enInt <= en1 and en; -- don't enable very first instruction twice
------------------------------------------------------------------------------
-- ALU controls
selectdataSource: process(opCode)
begin
aluOpSel <= '0';
portInSel <= '0';
scratchpadSel <= '0';
case opCode(opCodeLength-1 downto 0) is
when opLoad => aluOpSel <= '1';
when opInput => portInSel <= '1';
when opFetch => scratchpadSel <= '1';
when opAnd => aluOpSel <= '1';
when opOr => aluOpSel <= '1';
when opXor => aluOpSel <= '1';
when opTest => aluOpSel <= '1';
when opComp => aluOpSel <= '1';
when opAdd => aluOpSel <= '1';
when opAddCy => aluOpSel <= '1';
when opSub => aluOpSel <= '1';
when opSubCy => aluOpSel <= '1';
when opShRot => aluOpSel <= '1';
when others => aluOpSel <= '-';
portInSel <= '-';
scratchpadSel <= '-';
end case;
end process selectdataSource;
registerFileSel <= aluOpSel and twoRegInstr;
instrDataSel <= aluOpSel and (not twoRegInstr);
regWriteEn <= enInt and (not discardOpCode);
regWriteTable: process(opCode, regWriteEn)
begin
case opCode(opCodeLength-1 downto 0) is
when opLoad => regWrite <= regWriteEn;
when opInput => regWrite <= regWriteEn;
when opFetch => regWrite <= regWriteEn;
when opAnd => regWrite <= regWriteEn;
when opOr => regWrite <= regWriteEn;
when opXor => regWrite <= regWriteEn;
when opAdd => regWrite <= regWriteEn;
when opAddCy => regWrite <= regWriteEn;
when opSub => regWrite <= regWriteEn;
when opSubCy => regWrite <= regWriteEn;
when opShRot => regWrite <= regWriteEn;
when others => regWrite <= '0';
end case;
end process regWriteTable;
------------------------------------------------------------------------------
-- I/O controls
readStrobe <= enInt when (opCode = opInput) and (discardOpCode = '0')
else '0';
writeStrobe <= enInt when (opCode = opOutput) and (discardOpCode = '0')
else '0';
------------------------------------------------------------------------------
-- scratchpad controls
scratchpadWrite <= '1' when opCode = opStore else '0';
------------------------------------------------------------------------------
-- Carry logic
flagsEn <= enInt and (not branchEnable);
flagsEnableTable: process(opCode, flagsEn)
begin
case opCode(opCodeLength-1 downto 0) is
when opAnd => flagsEnable <= flagsEn;
when opOr => flagsEnable <= flagsEn;
when opXor => flagsEnable <= flagsEn;
when opTest => flagsEnable <= flagsEn;
when opComp => flagsEnable <= flagsEn;
when opAdd => flagsEnable <= flagsEn;
when opAddCy => flagsEnable <= flagsEn;
when opSub => flagsEnable <= flagsEn;
when opSubCy => flagsEnable <= flagsEn;
when opShRot => flagsEnable <= flagsEn;
when others => flagsEnable <= '0';
end case;
end process flagsEnableTable;
saveCarries: process(reset, clock)
begin
if reset = '1' then
carrySaved <= '0';
zeroSaved <= '0';
elsif rising_edge(clock) then
if flagsEnable = '1' then
carrySaved <= cOut;
zeroSaved <= zero;
end if;
end if;
end process saveCarries;
cIn <= carrySaved;
------------------------------------------------------------------------------
-- Program counter controls
checkBranchCondition: process(branchCond, zeroSaved, carrySaved)
begin
case branchCond(branchConditionLength-1 downto 0) is
when brAw => branchEnable1 <= '1';
when brZ => branchEnable1 <= zeroSaved;
when brNZ => branchEnable1 <= not zeroSaved;
when brC => branchEnable1 <= carrySaved;
when brNC => branchEnable1 <= not carrySaved;
when others => branchEnable1 <= '-';
end case;
end process checkBranchCondition;
branchEnableTable: process(opCode, branchEnable1, discardOpCode)
begin
if discardOpCode = '0' then
case opCode(opCodeLength-1 downto 0) is
when opRet => branchEnable <= branchEnable1;
when opCall => branchEnable <= branchEnable1;
when opJump => branchEnable <= branchEnable1;
when others => branchEnable <= '0';
end case;
else
branchEnable <= '0';
end if;
end process branchEnableTable;
progCounterControlTable: process(opCode, enInt, branchEnable)
begin
incPC <= enInt;
loadInstrAddress <= '0';
loadStoredPC <= '0';
case opCode(opCodeLength-1 downto 0) is
when opRet => incPC <= not branchEnable;
loadStoredPC <= enInt and branchEnable;
when opCall => incPC <= not branchEnable;
loadInstrAddress <= enInt and branchEnable;
when opJump => incPC <= not branchEnable;
loadInstrAddress <= enInt and branchEnable;
when others => null;
end case;
end process progCounterControlTable;
-- If a branch condition is met, the next operation has to be discarded.
-- This is due to the synchronous operation of the program ROM: the
-- instructions are provided one clock period after the program counter.
-- so while the branch operation is processed, the next instruction is
-- already being fetched.
delayBranchEnable: process(reset, clock)
begin
if reset = '1' then
discardOpCode <= '0';
elsif rising_edge(clock) then
discardOpCode <= branchEnable;
end if;
end process delayBranchEnable;
------------------------------------------------------------------------------
-- Stack pointer controls
pcStackControlTable: process(discardOpCode, opCode, enInt)
begin
storePC <= '0';
prevPC <= '0';
if discardOpCode = '0' then
case opCode(opCodeLength-1 downto 0) is
when opRet => prevPC <= enInt;
when opCall => storePC <= enInt;
when others => null;
end case;
end if;
end process pcStackControlTable;
------------------------------------------------------------------------------
-- interrupt control
updateIntFlag <= '1' when opCode = opIntF else '0';
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,56 @@
ARCHITECTURE RTL OF instructionDecoder IS
constant opCodeIndexH : integer := instruction'high;
constant opCodeIndexL : integer := opCodeIndexH - opCodeBitNb + 1;
constant twoRegInstrIndex : integer := opCodeIndexL - 1;
constant ioAddrIndexed : integer := twoRegInstrIndex;
constant addrAIndexH : integer := twoRegInstrIndex - 1;
constant addrAIndexL : integer := addrAIndexH - registerAddressBitNb + 1;
constant immediateDataIndexH : integer := registerBitNb-1;
constant immediateDataIndexL : integer := 0;
constant addrBIndexH : integer := addrAIndexL - 1;
constant addrBIndexL : integer := addrBIndexH - registerAddressBitNb + 1;
constant aluCodeIndexH : integer := opCodeIndexH;
constant aluCodeIndexL : integer := aluCodeIndexH - aluCodeBitNb + 1;
constant portAddressH : integer := registerBitNb-1;
constant portAddressL : integer := portAddressH-portAddressBitNb+1;
constant spadAddressH : integer := registerBitNb-1;
constant spadAddressL : integer := spadAddressH-spadAddressBitNb+1;
constant branchCondH : integer := opCodeIndexL-1;
constant branchCondL : integer := branchCondH-branchCondBitNb+1;
BEGIN
------------------------------------------------------------------------------
-- ALU control
aluCode <=
instruction(aluCodeIndexH downto aluCodeIndexL)
when instruction(aluCodeIndexH) = '0' else
'1' & instruction(aluCodeBitNb-2 downto 0);
opCode <= instruction(opCodeIndexH downto opCodeIndexL);
twoRegInstr <= instruction(twoRegInstrIndex);
addrA <= unsigned(instruction(addrAIndexH downto addrAIndexL));
addrB <= unsigned(instruction(addrBIndexH downto addrBIndexL));
instrData <= signed(instruction(immediateDataIndexH downto immediateDataIndexL));
------------------------------------------------------------------------------
-- I/O control
portIndexedSel <= instruction(ioAddrIndexed);
portAddress <= unsigned(instruction(portAddressH downto portAddressL));
------------------------------------------------------------------------------
-- scratchpad control
spadIndexedSel <= instruction(ioAddrIndexed);
spadAddress <= unsigned(instruction(spadAddressH downto spadAddressL));
------------------------------------------------------------------------------
-- branch control
branchCond <= instruction(branchCondH downto branchCondL);
instrAddress <= unsigned(instruction(instrAddress'range));
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,565 @@
#!/usr/bin/env perl
my $indent = ' ' x 2;
my $separator = '-' x 80;
################################################################################
# Input arguments
#
use Getopt::Std;
my %opts;
getopts('hva:d:r:kz', \%opts);
die("\n".
"Usage: $0 [options] fileSpec\n".
"\n".
"Options:\n".
"${indent}-h display this help message\n".
"${indent}-v verbose\n".
"${indent}-a bitNb the number of program address bits\n".
"${indent}-d bitNb the number of data bits\n".
"${indent}-r bitNb the number of register address bits\n".
"${indent}-k keep source comments in VHDL code\n".
"${indent}-z zero don't care bits in VHDL ROM code\n".
"\n".
"Assemble code to VHDL for the nanoBlaze processor.\n".
"\n".
"More information with: perldoc $0\n".
"\n".
""
) if ($opts{h});
my $verbose = $opts{v};
my $keepComments = $opts{k};
my $zeroDontCares = $opts{z};
my $addressBitNb = $opts{a} || 10;
my $registerBitNb = $opts{d} || 8;
my $registerAddressBitNb = $opts{r} || 4;
my $asmFileSpec = $ARGV[0] || 'nanoTest.asm';
my $outFileSpec = $ARGV[1] || 'rom_mapped.vhd';
#-------------------------------------------------------------------------------
# System constants
#
my $binaryOpCodeLength = 6;
my $binaryBranchLength = 5;
my $binaryBranchConditionLength = 3;
my $opCodeBaseLength = 10;
my $vhdlAddressLength = 14;
#-------------------------------------------------------------------------------
# Derived values
#
# file specs
my $baseFileSpec = $asmFileSpec;
$baseFileSpec =~ s/\..*//i;
my $asm1FileSpec = "$baseFileSpec.asm1"; # formatted assembly code
my $asm2FileSpec = "$baseFileSpec.asm2"; # code with addresses replaced
my $vhdlFileSpec = "$baseFileSpec.vhd";
# instruction length
my $binaryOperationInstructionLength =
$binaryOpCodeLength +
$registerAddressBitNb +
$registerBitNb;
my $binaryBranchInstructionLength =
$binaryBranchLength +
$binaryBranchConditionLength +
$addressBitNb;
my $binaryInstructionLength = $binaryOperationInstructionLength;
if ($binaryBranchInstructionLength > $binaryInstructionLength) {
$binaryInstructionLength = $binaryBranchInstructionLength
}
# assembler string lengths
my $registerCharNb = int( ($registerBitNb-1)/4 ) + 1;
my $addressCharNb = int( ($addressBitNb-1)/4 ) + 1;
# vhdl string lengths
my $vhdlOpCodeLength = $binaryOpCodeLength + 4;
my $opCodeTotalLength = 22 + $registerCharNb;
my $vhdlOperand1Length = $registerAddressBitNb + 3;
my $vhdlOperand2Length = $registerBitNb + 4;
if ($addressBitNb + 3 > $vhdlOperand2Length) {
$vhdlOperand2Length = $addressBitNb + 3
}
my $vhdlTotalLength = $vhdlOpCodeLength;
$vhdlTotalLength = $vhdlTotalLength + $vhdlOperand1Length + $vhdlOperand2Length;
$vhdlTotalLength = $vhdlTotalLength + 2*2; # '& '
$vhdlTotalLength = $vhdlTotalLength + 1; # ','
#-------------------------------------------------------------------------------
# System variables
#
my %constants = ();
my %addresses = ();
################################################################################
# Functions
#
#-------------------------------------------------------------------------------
# Find constant from "CONSTANT" statement
#
sub findNewConstant {
my ($codeLine) = @_;
$codeLine =~ s/CONSTANT\s+//;
my ($name, $value) = split(/,\s*/, $codeLine);
$value = hex($value);
return ($name, $value);
}
#-------------------------------------------------------------------------------
# Find address from "ADDRESS" statement
#
sub findNewAddress {
my ($codeLine) = @_;
$codeLine =~ s/ADDRESS\s*//;
my $address = hex($codeLine);
return $address;
}
#-------------------------------------------------------------------------------
# Format opcodes
#
sub prettyPrint {
my ($codeLine) = @_;
my ($opcode, $arguments) = split(/ /, $codeLine, 2);
$opcode = $opcode . ' ' x ($opCodeBaseLength - length($opcode));
$arguments =~ s/,*\s+/, /;
$codeLine = $opcode . $arguments;
return $codeLine;
}
#-------------------------------------------------------------------------------
# Format to binary
#
sub toBinary {
my ($operand, $bitNb) = @_;
#$operand = sprintf("%0${bitNb}b", $operand);
my $hexCharNb = int($bitNb/4) + 1;
$operand = sprintf("%0${hexCharNb}X", $operand);
$operand =~ s/0/0000/g;
$operand =~ s/1/0001/g;
$operand =~ s/2/0010/g;
$operand =~ s/3/0011/g;
$operand =~ s/4/0100/g;
$operand =~ s/5/0101/g;
$operand =~ s/6/0110/g;
$operand =~ s/7/0111/g;
$operand =~ s/8/1000/g;
$operand =~ s/9/1001/g;
$operand =~ s/A/1010/g;
$operand =~ s/B/1011/g;
$operand =~ s/C/1100/g;
$operand =~ s/D/1101/g;
$operand =~ s/E/1110/g;
$operand =~ s/F/1111/g;
$operand = substr($operand, length($operand)-$bitNb, $bitNb);
return $operand;
}
################################################################################
# Program start
#
#-------------------------------------------------------------------------------
# Display information
#
if ($verbose > 0) {
print "$separator\n";
print "Assembling $asmFileSpec to $vhdlFileSpec\n";
}
#-------------------------------------------------------------------------------
# Calculate adresses, store address labels
#
if ($verbose > 0) {
print "${indent}Pass 1: from $asmFileSpec to $asm1FileSpec\n";
}
my $romAddress = 0;
open(asmFile, "<$asmFileSpec") or die "Unable to open file, $!";
open(asm1File, ">$asm1FileSpec") or die "Unable to open file, $!";
while(my $line = <asmFile>) {
chomp($line);
# split code and comment
my ($codeLine, $comment) = split(/;/, $line, 2);
# handle address label
if ($codeLine =~ m/:/) {
(my $label, $codeLine) = split(/:/, $codeLine);
$label =~ s/\s*//;
print asm1File "; _${label}_:\n";
$addresses{$label} = sprintf("%0${addressCharNb}X", $romAddress);
}
# cleanup code
$codeLine =~ s/\s+/ /g;
$codeLine =~ s/\A\s//;
$codeLine =~ s/\s\Z//;
$codeLine =~ s/\s,/,/;
if ($codeLine) {
# handle ADDRESS declaration
if ($codeLine =~ m/ADDRESS/) {
$romAddress = findNewAddress($codeLine);
}
# handle CONSTANT declaration
elsif ($codeLine =~ m/CONSTANT/) {
($name, $value) = findNewConstant($codeLine);
$constants{$name} = sprintf("%0${registerCharNb}X", $value);
}
# print cleaned-up code
else {
$codeLine = prettyPrint($codeLine);
print asm1File sprintf("%0${addressCharNb}X", $romAddress), ": $codeLine";
if ($comment) {
print asm1File " ;$comment";
}
print asm1File "\n";
$romAddress = $romAddress + 1;
}
}
else {
print asm1File ";$comment\n";
}
}
close(asmFile);
close(asm1File);
#-------------------------------------------------------------------------------
# Replace constant values and address labels
#
if ($verbose > 0) {
print "${indent}Pass 2: from $asm1FileSpec to $asm2FileSpec\n";
}
open(asm2File, ">$asm2FileSpec") or die "Unable to open file, $!";
open(asm1File, "<$asm1FileSpec") or die "Unable to open file, $!";
while(my $line = <asm1File>) {
chomp($line);
# split code and comment
my ($opcode, $comment) = split(/;/, $line, 2);
if ( ($line =~ m/;/) and ($comment eq '') ) {
$comment = ' ';
}
# cleanup code
$opcode =~ s/\s+\Z//;
# replace constants
foreach my $name (keys %constants) {
$opcode =~ s/$name/$constants{$name}/g;
}
# replace addresses
foreach my $label (keys %addresses) {
$opcode =~ s/$label/$addresses{$label}/g;
}
# cleanup code
$opcode = uc($opcode);
$opcode =~ s/\sS([0-9A-F])/ s$1/g;
# print cleaned-up code
if ($comment) {
if ($opcode) {
$opcode = $opcode . ' ' x ($opCodeTotalLength - length($opcode));
}
$comment =~ s/\s+\Z//;
print asm2File "$opcode;$comment\n";
}
else {
print asm2File "$opcode\n";
}
}
close(asm1File);
close(asm2File);
#-------------------------------------------------------------------------------
# Write VHDL ROM code
#
if ($verbose > 0) {
print "${indent}Pass 3: from $asm2FileSpec to $vhdlFileSpec\n";
}
open(vhdlFile, ">$vhdlFileSpec") or die "Unable to open file, $!";
print vhdlFile <<DONE;
ARCHITECTURE mapped OF programRom IS
subtype opCodeType is std_ulogic_vector(5 downto 0);
constant opLoadC : opCodeType := "000000";
constant opLoadR : opCodeType := "000001";
constant opInputC : opCodeType := "000100";
constant opInputR : opCodeType := "000101";
constant opFetchC : opCodeType := "000110";
constant opFetchR : opCodeType := "000111";
constant opAndC : opCodeType := "001010";
constant opAndR : opCodeType := "001011";
constant opOrC : opCodeType := "001100";
constant opOrR : opCodeType := "001101";
constant opXorC : opCodeType := "001110";
constant opXorR : opCodeType := "001111";
constant opTestC : opCodeType := "010010";
constant opTestR : opCodeType := "010011";
constant opCompC : opCodeType := "010100";
constant opCompR : opCodeType := "010101";
constant opAddC : opCodeType := "011000";
constant opAddR : opCodeType := "011001";
constant opAddCyC : opCodeType := "011010";
constant opAddCyR : opCodeType := "011011";
constant opSubC : opCodeType := "011100";
constant opSubR : opCodeType := "011101";
constant opSubCyC : opCodeType := "011110";
constant opSubCyR : opCodeType := "011111";
constant opShRot : opCodeType := "100000";
constant opOutputC : opCodeType := "101100";
constant opOutputR : opCodeType := "101101";
constant opStoreC : opCodeType := "101110";
constant opStoreR : opCodeType := "101111";
subtype shRotCinType is std_ulogic_vector(2 downto 0);
constant shRotLdC : shRotCinType := "00-";
constant shRotLdM : shRotCinType := "01-";
constant shRotLdL : shRotCinType := "10-";
constant shRotLd0 : shRotCinType := "110";
constant shRotLd1 : shRotCinType := "111";
constant registerAddressBitNb : positive := $registerAddressBitNb;
constant shRotPadLength : positive
:= dataOut'length - opCodeType'length - registerAddressBitNb
- 1 - shRotCinType'length;
subtype shRotDirType is std_ulogic_vector(1+shRotPadLength-1 downto 0);
constant shRotL : shRotDirType := (0 => '0', others => '-');
constant shRotR : shRotDirType := (0 => '1', others => '-');
subtype branchCodeType is std_ulogic_vector(4 downto 0);
constant brRet : branchCodeType := "10101";
constant brCall : branchCodeType := "11000";
constant brJump : branchCodeType := "11010";
constant brReti : branchCodeType := "11100";
constant brEni : branchCodeType := "11110";
subtype branchConditionType is std_ulogic_vector(2 downto 0);
constant brDo : branchConditionType := "000";
constant brZ : branchConditionType := "100";
constant brNZ : branchConditionType := "101";
constant brC : branchConditionType := "110";
constant brNC : branchConditionType := "111";
subtype memoryWordType is std_ulogic_vector(dataOut'range);
type memoryArrayType is array (0 to 2**address'length-1) of memoryWordType;
signal memoryArray : memoryArrayType := (
DONE
open(asm2File, "<$asm2FileSpec") or die "Unable to open file, $!";
while(my $line = <asm2File>) {
chomp($line);
# split code and comment
my ($opcode, $comment) = split(/;/, $line, 2);
if ( ($line =~ m/;/) and ($comment eq '') ) {
$comment = ' ';
}
# addresses to VHDL
my $address;
if ($opcode) {
($address, $opcode) = split(/:\s+/, $opcode, 2);
$address = '16#' . $address . '# =>';
$address = ' ' x ($vhdlAddressLength - length($address)) . $address;
}
# opcode to VHDL
if ($opcode) {
if ($comment eq '') {
$comment = ' ' . $opcode;
}
else {
$comment = ' ' . $opcode . ';' . $comment;
}
# replace NOP
$opcode =~ s/\ANOP/LOAD s0, s0/;
# split opcodes and operands
$opcode =~ s/\s+/ /;
$opcode =~ s/\s+\Z//;
($opcode, my $operand1, my $operand2) = split(/\s/, $opcode);
$operand1 =~ s/,//;
$operand1 =~ s/S/s/;
$operand2 =~ s/S/s/;
if ( ($opcode =~ m/\ASL/) or ($opcode =~ m/\ASR/) ) {
$operand2 = substr($opcode, 0, 3);
$opcode = 'SHIFT';
}
if ( ($opcode =~ m/\ARL/) or ($opcode =~ m/\ARR/) ) {
$operand2 = substr($opcode, 0, 2);
$opcode = 'ROT';
}
if ( ($opcode eq 'JUMP') or ($opcode eq 'CALL') or ($opcode eq 'RETURN') ) {
unless ($operand2) {
unless ($opcode eq 'RETURN') {
$operand2 = $operand1;
}
$operand1 = 'AW'; # AlWays
}
}
#...........................................................................
# opcodes to VHDL
$opcode =~ s/LOAD/opLoadC/;
$opcode =~ s/AND/opAndC/;
$opcode =~ s/XOR/opXorC/;
$opcode =~ s/ADDCY/opAddCyC/;
$opcode =~ s/SUBCY/opSubCyC/;
$opcode =~ s/ADD/opAddC/;
$opcode =~ s/SUB/opSubC/;
$opcode =~ s/SHIFT/opShRot/;
$opcode =~ s/ROT/opShRot/;
$opcode =~ s/COMPARE/opCompC/;
$opcode =~ s/TEST/opTestC/;
$opcode =~ s/FETCH/opFetchC/;
$opcode =~ s/STORE/opStoreC/;
$opcode =~ s/OR/opOrC/;
$opcode =~ s/INPUT/opInputC/;
$opcode =~ s/OUTPUT/opOutputC/;
$opcode =~ s/JUMP/brJump/;
$opcode =~ s/CALL/brCall/;
$opcode =~ s/RETURN/brRet/;
if ($operand2 =~ m/s[0-9A-F]/) {
$opcode =~ s/C\Z/R/;
}
$opcode = $opcode . ' ' x ($vhdlOpCodeLength - length($opcode)) . '& ';
#...........................................................................
# register as first operand
if ($operand1 =~ m/s[0-9A-F]/) {
$operand1 =~ s/\As//;
$operand1 = '"' . toBinary($operand1, $registerAddressBitNb) . '"';
}
# test condition
$operand1 =~ s/NC/brNC/;
$operand1 =~ s/NZ/brNZ/;
$operand1 =~ s/\AC/brC/;
$operand1 =~ s/\AZ/brZ/;
$operand1 =~ s/AW/brDo/;
if ($opcode =~ m/brRet/) {
$operand2 = 0;
}
if ($operand2 eq '') {
$operand1 = $operand1 . ',';
}
$operand1 = $operand1 . ' ' x ($vhdlOperand1Length - length($operand1));
unless ($operand2 eq '') {
$operand1 = $operand1 . '& ';
}
#print "|$opcode| |$operand1| |$operand2|\n";
#...........................................................................
# register as second operand
$operand2 =~ s/\A\((.*)\)\Z/$1/;
if ($operand2 =~ m/s[0-9A-F]/) {
$operand2 =~ s/\As//;
$operand2 = toBinary($operand2, $registerAddressBitNb);
if ($registerBitNb > $registerAddressBitNb) {
$operand2 = $operand2 . '-' x ($registerBitNb - $registerAddressBitNb);
if ($zeroDontCares) {
$operand2 =~ s/\-/0/g;
}
}
}
# address as second operand
elsif ($opcode =~ m/\Abr/) {
my $fill = '';
if ($binaryBranchInstructionLength < $binaryInstructionLength) {
$fill = '-' x ($binaryInstructionLength - $binaryBranchInstructionLength);
if ($zeroDontCares) {
$fill =~ s/\-/0/g;
}
}
if ( ($opcode =~ m/Ret/) ) {
$operand2 = $fill . '-' x $addressBitNb;
}
else {
$operand2 = $fill . toBinary(hex($operand2), $addressBitNb);
}
}
# shift and rotate operators
elsif ($opcode =~ m/opShRot/) {
$operand2 =~ s/SL0/shRotL & shRotLd0/;
$operand2 =~ s/SL1/shRotL & shRotLd1/;
$operand2 =~ s/SLX/shRotL & shRotLdL/;
$operand2 =~ s/SLA/shRotL & shRotLdC/;
$operand2 =~ s/SR0/shRotR & shRotLd0/;
$operand2 =~ s/SR1/shRotR & shRotLd1/;
$operand2 =~ s/SRX/shRotR & shRotLdM/;
$operand2 =~ s/SRA/shRotR & shRotLdC/;
$operand2 =~ s/RL/shRotL & shRotLdH/;
$operand2 =~ s/RR/shRotR & shRotLdL/;
}
# constant as second operand
else {
$operand2 = toBinary(hex($operand2), $registerBitNb);
if ($registerAddressBitNb > $registerBitNb) {
$operand2 = '-' x ($registerAddressBitNb - $registerBitNb) . $operand2;
}
}
unless ($opcode =~ m/opShRot/) {
$operand2 = '"' . $operand2 . '"';
}
# add separator at end
if ($operand2) {
$operand2 = $operand2 . ',';
}
#...........................................................................
# concatenate opcode and operands
$opcode = $opcode . $operand1 . $operand2;
}
else {
$address = ' ' x $vhdlAddressLength;
}
# print VHDL code
if ($keepComments == 0) {
if ($opcode) {
print vhdlFile "$address $opcode\n";
}
}
else {
$opcode = $opcode . ' ' x ($vhdlTotalLength - length($opcode));
if ($comment) {
$comment =~ s/\s+\Z//;
print vhdlFile "$address $opcode--$comment\n";
}
else {
print vhdlFile "$address $opcode\n";
}
}
}
close(asm2File);
print vhdlFile <<DONE;
others => (others => '0')
);
BEGIN
process (clock)
begin
if rising_edge(clock) then
if en = '1' then
dataOut <= memoryArray(to_integer(address));
end if;
end if;
end process;
END ARCHITECTURE mapped;
DONE
close(vhdlFile);
#-------------------------------------------------------------------------------
# Delete original file and copy VHDL file
#
if ($verbose > 0) {
print "Copying $vhdlFileSpec to $outFileSpec\n";
}
use File::Copy;
unlink($outFileSpec);
copy($vhdlFileSpec, $outFileSpec) or die "File cannot be copied.";
#rename($vhdlFileSpec, $outFileSpec);
if ($verbose > 0) {
print "$separator\n";
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,342 @@
;===============================================================
; nanoTest.asm
; Used for checking the NanoBlaze instruction set
;===============================================================
; 1) Test logical operations with direct values
;---------------------------------------------------------------
LOAD s7, 01
CONSTANT testPattern, 0F
;---------------------------------------------------------------
; Test "LOAD", "AND"
;---------------------------------------------------------------
LOAD s0, testPattern
AND s0, 33
COMPARE s0, 03
JUMP NZ, error
;---------------------------------------------------------------
; Test "OR"
;---------------------------------------------------------------
LOAD s1, testPattern
OR s1, 33
COMPARE s1, 3F
JUMP NZ, error
;---------------------------------------------------------------
; Test "XOR"
;---------------------------------------------------------------
LOAD s2, testPattern
XOR s2, 33
COMPARE s2, 3C
JUMP NZ, error
;===============================================================
; 2) Test logical operations with registers
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "LOAD"
;---------------------------------------------------------------
LOAD s0, 33
LOAD s3, s0
COMPARE s3, 33
JUMP NZ, error
;---------------------------------------------------------------
; Test "AND"
;---------------------------------------------------------------
LOAD s0, 0F
AND s0, s3
COMPARE s0, 03
JUMP NZ, error
;---------------------------------------------------------------
; Test "OR"
;---------------------------------------------------------------
LOAD s1, 0F
OR s1, s3
COMPARE s1, 3F
JUMP NZ, error
;---------------------------------------------------------------
; Test "XOR"
;---------------------------------------------------------------
LOAD s2, 0F
XOR s2, s3
COMPARE s2, 3C
JUMP NZ, error
;===============================================================
; 3) Test arithmetic operations with constants
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "ADD" and "ADDCY"
;---------------------------------------------------------------
LOAD s0, 0F
ADD s0, 31 ; 40
ADDCY s0, F0 ; 130
ADDCY s0, F0 ; 121
ADD s0, 0F ; 30
COMPARE s0, 30
JUMP NZ, error
;---------------------------------------------------------------
; Test "SUB" and "SUBCY"
;---------------------------------------------------------------
LOAD s1, 0F
SUB s1, 0C ; 03
SUBCY s1, F0 ; 113
SUBCY s1, F0 ; 22
SUB s1, 01 ; 21
COMPARE s1, 21
JUMP NZ, error
;===============================================================
; 4) Test arithmetic operations with registers
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "ADD" and "ADDCY"
;---------------------------------------------------------------
LOAD s0, 0F
LOAD s1, 31
LOAD s2, F0
LOAD s3, 0F
ADD s0, s1 ; 40
ADDCY s0, s2 ; 130
ADDCY s0, s2 ; 121
ADD s0, s3 ; 30
COMPARE s0, 30
JUMP NZ, error
;---------------------------------------------------------------
; Test "SUB" and "SUBCY"
;---------------------------------------------------------------
LOAD s1, 0F
LOAD s0, 0C
LOAD s2, F0
LOAD s3, 01
SUB s1, s0 ; 03
SUBCY s1, s2 ; 113
SUBCY s1, s2 ; 22
SUB s1, s3 ; 21
COMPARE s1, 21
JUMP NZ, error
;===============================================================
; 5) Test shifts
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test shift right
;---------------------------------------------------------------
LOAD s0, 0F ; 0F
SR0 s0 ; 07
SRX s0 ; 03
SR1 s0 ; 81
SRX s0 ; C0, C=1
SRA s0 ; E0, C=0
SRA s0 ; 70
COMPARE s0, 70
JUMP NZ, error
;---------------------------------------------------------------
; Test shift left
;---------------------------------------------------------------
LOAD s1, F0 ; FO
SL0 s1 ; E0
SLX s1 ; C0
SL1 s1 ; 81
SLX s1 ; 03, C=1
SLA s1 ; 07, C=0
SLA s1 ; 0E
COMPARE s1, 0E
JUMP NZ, error
;===============================================================
; 6) Test comparison operators
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "COMPARE"
;---------------------------------------------------------------
LOAD s0, 0F
COMPARE s0, F0 ; A < B => C=1
JUMP NC, error
COMPARE s0, F0 ; A < B => Z=0
JUMP Z, error
COMPARE s0, s0 ; A = B => Z=1
JUMP NZ, error
COMPARE s0, 08 ; A > B => C=0
JUMP C, error
COMPARE s0, 08 ; A > B => Z=0
JUMP Z, error
;---------------------------------------------------------------
; Test "TEST"
;---------------------------------------------------------------
LOAD s0, 0F
TEST s0, F0 ; AND is 00 => Z=1
JUMP NZ, error
TEST s0, FF ; AND is 0F => Z=0
JUMP Z, error
;===============================================================
; 7) Test INPUT and OUTPUT operators
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "INPUT" and "OUTPUT" direct
;
; The testbench should invert the word written at address FC.
;---------------------------------------------------------------
LOAD s0, AA
OUTPUT s0, FC
INPUT s1, FC
COMPARE s1, 55
JUMP NZ, error
;---------------------------------------------------------------
; Test "INPUT" and "OUTPUT" indexed
;---------------------------------------------------------------
LOAD s0, CC
LOAD s2, FC
OUTPUT s0, (s2)
INPUT s1, (s2)
COMPARE s1, 33
JUMP NZ, error
;===============================================================
; 8) Test STORE and FETCH operators
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "STORE" and "FETCH" direct
;---------------------------------------------------------------
LOAD s0, 0F
STORE s0, 03
FETCH s1, 03
COMPARE s1, 0F
JUMP NZ, error
;---------------------------------------------------------------
; Test "STORE" and "FETCH" indexed
;---------------------------------------------------------------
LOAD s0, F0
LOAD s2, 04
STORE s0, (s2)
FETCH s1, (s2)
COMPARE s1, F0
JUMP NZ, error
;===============================================================
; 9) Test JUMP instructions
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; Test "JUMP NC"
;---------------------------------------------------------------
LOAD s0, F0
ADD s0, 00 ; s0=F0, C=0, Z=0
JUMP NC, continue1
JUMP error
;---------------------------------------------------------------
; Test "JUMP NZ"
;---------------------------------------------------------------
continue1: ADD s0, 00 ; s0=F0, C=0, Z=0
JUMP NZ, continue2
JUMP error
;---------------------------------------------------------------
; Test "JUMP C"
;---------------------------------------------------------------
continue2: ADD s0, F0 ; s0=E0, C=1, Z=0
JUMP C, continue3
JUMP error
;---------------------------------------------------------------
; Test "JUMP Z"
;---------------------------------------------------------------
continue3: SUB s0, E0 ; s0=00, C=0, Z=1
JUMP Z, continue4
JUMP error
continue4: NOP
;===============================================================
; 10) Test call instructions
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; define subroutine
;---------------------------------------------------------------
JUMP continue5
subRetDo: ADD s0, 01
RETURN
JUMP error
;---------------------------------------------------------------
; Test "CALL"
;---------------------------------------------------------------
continue5: LOAD s0, 00
LOAD s1, F0
CALL subRetDo ; s0=01
;---------------------------------------------------------------
; Test "CALL NC"
;---------------------------------------------------------------
ADD s1, 00 ; s1=F0, C=0, Z=0
CALL NC, subRetDo ; s0=02
;---------------------------------------------------------------
; Test "CALL NZ"
;---------------------------------------------------------------
ADD s1, 00 ; s1=F0, C=0, Z=0
CALL NZ, subRetDo ; s0=03
;---------------------------------------------------------------
; Test "CALL C"
;---------------------------------------------------------------
ADD s1, F0 ; s0=E0, C=1, Z=0
CALL C, subRetDo ; s0=04
;---------------------------------------------------------------
; Test "CALL Z"
;---------------------------------------------------------------
SUB s1, E0 ; s0=00, C=0, Z=1
CALL Z, subRetDo ; s0=05
COMPARE s0, 05
jump nz, error
;===============================================================
; 11) Test call return instructions
;---------------------------------------------------------------
ADD s7, 01
;---------------------------------------------------------------
; define subroutines
;---------------------------------------------------------------
JUMP continue6
subRetNC: ADD s0, 01
RETURN NC
JUMP error
subRetNZ: ADD s0, 01
RETURN NZ
JUMP error
subRetC: ADD s0, 01
RETURN C
JUMP error
subRetZ: ADD s0, 01
RETURN Z
JUMP error
;---------------------------------------------------------------
; Test "RETURN NC"
;---------------------------------------------------------------
continue6: LOAD s0, 00 ; increment will give C=0, Z=0
CALL NC, subRetNC
;---------------------------------------------------------------
; Test "RETURN NZ"
;---------------------------------------------------------------
LOAD s0, 00 ; increment will give C=0, Z=0
CALL NZ, subRetNZ
;---------------------------------------------------------------
; Test "RETURN C"
;---------------------------------------------------------------
LOAD s0, FF ; increment will give C=1, Z=1
CALL C, subRetC
;---------------------------------------------------------------
; Test "RETURN Z"
;---------------------------------------------------------------
LOAD s0, FF ; increment will give C=1, Z=1
CALL Z, subRetZ
;===============================================================
; End of tests
;
; The testbench should react if value 1 is written to address 00.
;---------------------------------------------------------------
LOAD s0, 01
OUTPUT s0, 00
JUMP endOfMemory
;===============================================================
; Assert error
;
; The testbench should react if value 0 is written to address 00.
;---------------------------------------------------------------
ADDRESS 3FD
error: LOAD s0, 00
OUTPUT s0, 00
;===============================================================
; End of instruction memory
;---------------------------------------------------------------
endOfMemory: JUMP endOfMemory

View File

@@ -0,0 +1,368 @@
{
beamer.pas
The beamer controller polls the UART to get commands and provides the
corresponding replies.
}
program BeamerControl;
{==============================================================================}
{ Constants }
{==============================================================================}
const
clockFrequency = 66E6;
gpioBaseAddress = $0000;
gpioDataOffset = $0000;
gpioEnableOffset = $0001;
uartBaseAddress = $0010;
uartBaudOffset = $0002;
uartStatusOffset = $0001;
uartDataReady = $0001;
uartSending = $0002;
uartBaudRate = 1E6;
uartBaudCount = clockFrequency / uartBaudRate;
uartPollDelay = uartBaudCount / 2;
uartTimeout = 10;
commandHeader = $AA;
commandNack = $00;
commandWriteMem = $03;
commandReadMem = $04;
commandWriteLength = 4;
commandReadLength = 2;
beamerBaseAddress = $0020;
beamerCtlOffset = $0000;
beamerSpeedOffset = $0001;
beamerCtlInit = $0401;
beamerSpeedInit = $0004;
commStIdle = $0000;
commStGetPacketId = $0001;
commStGetCommandId = $0002;
commStGetDataLength = $0003;
commStGetData = $0004;
commStGetChecksum = $0005;
commStExecuteCommand = $0006;
commStSendHeader = $0007;
commStSendPacketId = $0008;
commStSendCommandId = $0009;
commStSendDataLength = $000A;
commStSendData = $000B;
commStSendChecksum = $000C;
{==============================================================================}
{ Variables }
{==============================================================================}
var
communicationState : word;
uartByte: uint8;
{==============================================================================}
{ Procedures and functions }
{==============================================================================}
{============================================================================}
{ Register-level functions }
{============================================================================}
{----------------------------------------------------------------------------}
{ Registers initializations }
{----------------------------------------------------------------------------}
procedure initRegisters;
const
gpioValue = $AA;
gpioEnablemask = $0F;
begin
{ initialize GPIO }
mem[gpioBaseAddress+gpioDataOffset] := gpioValue;
mem[gpioBaseAddress+gpioEnableOffset] := gpioEnablemask;
{ initialize UART }
mem[uartBaseAddress+uartBaudOffset] := uartBaudCount;
{ initialize beamer peripheral }
mem[beamerBaseAddress+beamerCtlOffset] := beamerCtlInit;
mem[beamerBaseAddress+beamerSpeedOffset] := beamerSpeedInit;
end;
{----------------------------------------------------------------------------}
{ Get byte from serial port with timeout }
{----------------------------------------------------------------------------}
function getSerialPortByte(var uartByte: uint8) : word;
var
dataReady: uint8;
pollCount: word;
begin
{ poll until data byte available or timeout occured}
pollCount := uartPollDelay;
dataReady := 0;
while dataReady = 0 do
begin
{ read status register }
dataReady := mem[uartBaseAddress+uartStatusOffset] and uartDataReady;
{ spend time in order not to overcharge the AHB bus }
if dataReady = 0 then
begin
{ check for timeout }
pollCount := pollCount -1;
if pollCount = 0 then
dataReady := $FF;
{ spend time in order not to overcharge the system bus }
for index := 1 to uartPollDelay do
noOperation;
end;
end;
{ function return }
if dataReady = $FF then
{ return timeout }
getSerialPortByte := 1;
else
{ read data register and return it }
begin
uartByte := mem[uartBaseAddress];
getSerialPortByte := 0;
end;
end;
{----------------------------------------------------------------------------}
{ Send byte to serial port with timeout }
{----------------------------------------------------------------------------}
function sendSerialPort(var uartByte : uint8) : word;
var
dataReady: uint8;
statusByte: uint8;
pollCount: word;
begin
{ poll until ready to send }
pollCount := uartPollDelay;
statusByte := mem[uartBaseAddress+uartStatusOffset] and uartSending;
while statusByte = 0 do
begin
{ check for timeout }
pollCount := pollCount -1;
if pollCount = 0 then
dataReady := $FF;
{ spend time in order not to overcharge the system bus }
for index := 1 to uartPollDelay do
noOperation;
{ read status register }
statusByte := mem[uartBaseAddress+uartStatusOffset] and uartSending;
end;
{ function return }
if dataReady = $FF then
{ return timeout }
sendSerialPort := 1;
else
{ write data register and return it }
begin
mem[uartBaseAddress] := uartByte;
sendSerialPort := 0;
end;
end;
{============================================================================}
{ Communication state machine }
{============================================================================}
procedure updateStateMachine(
var communicationState : word;
var uartByte: uint8
);
var
communicationNextState : word;
uartStatus: word;
packetId, commandId : uint8;
checksum : uint8;
dataLength, dataCount, data1, data2, data3, data4 : uint8;
memAddress, memData : word;
begin
{ idle }
if communicationState = commStIdle then
begin
uartStatus := getSerialPortByte(var uartByte: uint8);
if (uartStatus = 0) and (uartByte = commandHeader) then
begin
checksum := uartByte;
communicationNextState := commStGetPacketId;
end;
end;
{ get packet id }
else if communicationState = commStGetPacketId then
begin
uartStatus := getSerialPortByte(var uartByte: uint8);
if uartStatus = 0 then
begin
packetId := uartByte;
checksum := checksum + uartByte;
communicationNextState := commStGetCommandId;
end;
end;
{ get command id }
else if communicationState = commStGetCommandId then
begin
uartStatus := getSerialPortByte(var uartByte: uint8);
if uartStatus = 0 then
begin
commandId := uartByte;
checksum := checksum + uartByte;
communicationNextState := commStGetDataLength;
end;
end;
{ get data length }
else if communicationState = commStGetDataLength then
begin
uartStatus := getSerialPortByte(var uartByte: uint8);
if uartStatus = 0 then
begin
dataLength := uartByte;
checksum := checksum + uartByte;
dataCount := dataLength;
communicationNextState := commStGetData;
end;
end;
{ get data }
else if communicationState = commStGetData then
begin
uartStatus := getSerialPortByte(var uartByte: uint8);
if uartStatus = 0 then
begin
data1 := data2;
data2 := data3;
data3 := data4;
data4 := uartByte;
checksum := checksum + uartByte;
dataCount := dataCount-1;
if dataCount = 0 then
communicationNextState := commStGetChecksum;
end;
end;
{ get checksum }
else if communicationState = commStGetChecksum then
begin
uartStatus := getSerialPortByte(var uartByte: uint8);
if uartStatus = 0 then
begin
if uartByte = checksum then
communicationState := commStExecuteCommand;
else
begin
commandId := commandNack;
dataLength := 0;
communicationNextState := commStSendHeader;
end;
end;
end;
{ execute command }
else if communicationState = commStExecuteCommand then
begin
if (commandId = commandWriteMem) and (dataLength = commandWriteLength) then
begin
memAddress := data1 + (data2 shl 8);
memData := data3 + (data4 shl 8);
mem[memAddress] := memData;
dataLength := 0;
communicationNextState := commStSendHeader;
end;
else if (commandId = commandReadMem) and (dataLength = commandReadLength) then
begin
memAddress := data3 + (data4 shl 8);
memData := mem[memAddress];
dataLength := 2;
data1 := memData and $00FF;
data2 := memData shr 8;
communicationNextState := commStSendHeader;
end;
else
begin
commandId := commandNack;
dataLength := 0;
communicationNextState := commStSendHeader;
end;
end;
{ send header }
else if communicationState = commStSendHeader then
begin
uartByte := commandHeader;
uartStatus := sendSerialPort(var uartByte: uint8);
if uartStatus = 0 then
begin
checksum := uartByte;
communicationNextState := commStSendPacketId;
end;
end;
{ send packet id }
else if communicationState = commStSendPacketId then
begin
uartByte := packetId;
uartStatus := sendSerialPort(var uartByte: uint8);
if uartStatus = 0 then
begin
checksum := checksum + uartByte;
communicationNextState := commStSendCommandId;
end;
end;
{ send command id }
else if communicationState = commStSendCommandId then
begin
uartByte := commandId;
uartStatus := sendSerialPort(var uartByte: uint8);
if uartStatus = 0 then
begin
checksum := checksum + uartByte;
communicationNextState := commStSendDataLength;
end;
end;
{ send data length }
else if communicationState = commStSendDataLength then
begin
uartByte := dataLength;
dataCount := dataLength;
uartStatus := sendSerialPort(var uartByte: uint8);
if uartStatus = 0 then
begin
checksum := checksum + uartByte;
communicationNextState := commStSendData;
end;
end;
{ send data }
else if communicationState = commStSendData then
begin
if dataCount > 0 then
begin
uartByte := data1;
data2 := data1;
data3 := data2;
data4 := data3;
uartStatus := sendSerialPort(var uartByte: uint8);
if uartStatus = 0 then
begin
checksum := checksum + uartByte;
dataCount := dataCount-1;
end;
end;
else
communicationNextState := commStSendChecksum;
end;
{ send checksum }
else if communicationState = commStSendChecksum then
begin
uartByte := checksum and $00FF;
uartStatus := sendSerialPort(var uartByte: uint8);
if uartStatus = 0 then
communicationNextState := commStIdle;
end;
{ update state }
communicationState := communicationNextState;
end;
{==============================================================================}
{ Main program }
{==============================================================================}
begin
{ initialize SoC registers }
initRegisters;
{ initialize communication state machine }
communicationState := commStIdle;
{ main loop }
while true do begin
{ update communication state machine }
updateStateMachine(var communicationState : word; var uartByte : uint8);
{ check for timeout }
end;
end.

View File

@@ -0,0 +1,431 @@
ARCHITECTURE mapped OF programRom IS
subtype opCodeType is std_ulogic_vector(5 downto 0);
constant opLoadC : opCodeType := "000000";
constant opLoadR : opCodeType := "000001";
constant opInputC : opCodeType := "000100";
constant opInputR : opCodeType := "000101";
constant opFetchC : opCodeType := "000110";
constant opFetchR : opCodeType := "000111";
constant opAndC : opCodeType := "001010";
constant opAndR : opCodeType := "001011";
constant opOrC : opCodeType := "001100";
constant opOrR : opCodeType := "001101";
constant opXorC : opCodeType := "001110";
constant opXorR : opCodeType := "001111";
constant opTestC : opCodeType := "010010";
constant opTestR : opCodeType := "010011";
constant opCompC : opCodeType := "010100";
constant opCompR : opCodeType := "010101";
constant opAddC : opCodeType := "011000";
constant opAddR : opCodeType := "011001";
constant opAddCyC : opCodeType := "011010";
constant opAddCyR : opCodeType := "011011";
constant opSubC : opCodeType := "011100";
constant opSubR : opCodeType := "011101";
constant opSubCyC : opCodeType := "011110";
constant opSubCyR : opCodeType := "011111";
constant opShRot : opCodeType := "100000";
constant opOutputC : opCodeType := "101100";
constant opOutputR : opCodeType := "101101";
constant opStoreC : opCodeType := "101110";
constant opStoreR : opCodeType := "101111";
subtype shRotCinType is std_ulogic_vector(2 downto 0);
constant shRotLdC : shRotCinType := "00-";
constant shRotLdM : shRotCinType := "01-";
constant shRotLdL : shRotCinType := "10-";
constant shRotLd0 : shRotCinType := "110";
constant shRotLd1 : shRotCinType := "111";
constant registerAddressBitNb : positive := 4;
constant shRotPadLength : positive
:= dataOut'length - opCodeType'length - registerAddressBitNb
- 1 - shRotCinType'length;
subtype shRotDirType is std_ulogic_vector(1+shRotPadLength-1 downto 0);
constant shRotL : shRotDirType := (0 => '0', others => '-');
constant shRotR : shRotDirType := (0 => '1', others => '-');
subtype branchCodeType is std_ulogic_vector(4 downto 0);
constant brRet : branchCodeType := "10101";
constant brCall : branchCodeType := "11000";
constant brJump : branchCodeType := "11010";
constant brReti : branchCodeType := "11100";
constant brEni : branchCodeType := "11110";
subtype branchConditionType is std_ulogic_vector(2 downto 0);
constant brDo : branchConditionType := "000";
constant brZ : branchConditionType := "100";
constant brNZ : branchConditionType := "101";
constant brC : branchConditionType := "110";
constant brNC : branchConditionType := "111";
subtype memoryWordType is std_ulogic_vector(dataOut'range);
type memoryArrayType is array (0 to 2**address'length-1) of memoryWordType;
signal memoryArray : memoryArrayType := (
--===============================================================
-- 1) Test logical operations with direct values
-----------------------------------------------------------------
16#000# => opLoadC & "0111" & "00000001", -- LOAD s7, 01
-----------------------------------------------------------------
-- Test "LOAD", "AND"
-----------------------------------------------------------------
16#001# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#002# => opAndC & "0000" & "00110011", -- AND s0, 33
16#003# => opCompC & "0000" & "00000011", -- COMPARE s0, 03
16#004# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "OR"
-----------------------------------------------------------------
16#005# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#006# => opOrC & "0001" & "00110011", -- OR s1, 33
16#007# => opCompC & "0001" & "00111111", -- COMPARE s1, 3F
16#008# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "XOR"
-----------------------------------------------------------------
16#009# => opLoadC & "0010" & "00001111", -- LOAD s2, 0F
16#00A# => opXorC & "0010" & "00110011", -- XOR s2, 33
16#00B# => opCompC & "0010" & "00111100", -- COMPARE s2, 3C
16#00C# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 2) Test logical operations with registers
-----------------------------------------------------------------
16#00D# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "LOAD"
-----------------------------------------------------------------
16#00E# => opLoadC & "0000" & "00110011", -- LOAD s0, 33
16#00F# => opLoadR & "0011" & "0000----", -- LOAD s3, s0
16#010# => opCompC & "0011" & "00110011", -- COMPARE s3, 33
16#011# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "AND"
-----------------------------------------------------------------
16#012# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#013# => opAndR & "0000" & "0011----", -- AND s0, s3
16#014# => opCompC & "0000" & "00000011", -- COMPARE s0, 03
16#015# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "OR"
-----------------------------------------------------------------
16#016# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#017# => opOrR & "0001" & "0011----", -- OR s1, s3
16#018# => opCompC & "0001" & "00111111", -- COMPARE s1, 3F
16#019# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "XOR"
-----------------------------------------------------------------
16#01A# => opLoadC & "0010" & "00001111", -- LOAD s2, 0F
16#01B# => opXorR & "0010" & "0011----", -- XOR s2, s3
16#01C# => opCompC & "0010" & "00111100", -- COMPARE s2, 3C
16#01D# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 3) Test arithmetic operations with constants
-----------------------------------------------------------------
16#01E# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "ADD" and "ADDCY"
-----------------------------------------------------------------
16#01F# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#020# => opAddC & "0000" & "00110001", -- ADD s0, 31 ; 40
16#021# => opAddCyC & "0000" & "11110000", -- ADDCY s0, F0 ; 130
16#022# => opAddCyC & "0000" & "11110000", -- ADDCY s0, F0 ; 121
16#023# => opAddC & "0000" & "00001111", -- ADD s0, 0F ; 30
16#024# => opCompC & "0000" & "00110000", -- COMPARE s0, 30
16#025# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "SUB" and "SUBCY"
-----------------------------------------------------------------
16#026# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#027# => opSubC & "0001" & "00001100", -- SUB s1, 0C ; 03
16#028# => opSubCyC & "0001" & "11110000", -- SUBCY s1, F0 ; 113
16#029# => opSubCyC & "0001" & "11110000", -- SUBCY s1, F0 ; 22
16#02A# => opSubC & "0001" & "00000001", -- SUB s1, 01 ; 21
16#02B# => opCompC & "0001" & "00100001", -- COMPARE s1, 21
16#02C# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 4) Test arithmetic operations with registers
-----------------------------------------------------------------
16#02D# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "ADD" and "ADDCY"
-----------------------------------------------------------------
16#02E# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#02F# => opLoadC & "0001" & "00110001", -- LOAD s1, 31
16#030# => opLoadC & "0010" & "11110000", -- LOAD s2, F0
16#031# => opLoadC & "0011" & "00001111", -- LOAD s3, 0F
16#032# => opAddR & "0000" & "0001----", -- ADD s0, s1 ; 40
16#033# => opAddCyR & "0000" & "0010----", -- ADDCY s0, s2 ; 130
16#034# => opAddCyR & "0000" & "0010----", -- ADDCY s0, s2 ; 121
16#035# => opAddR & "0000" & "0011----", -- ADD s0, s3 ; 30
16#036# => opCompC & "0000" & "00110000", -- COMPARE s0, 30
16#037# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "SUB" and "SUBCY"
-----------------------------------------------------------------
16#038# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#039# => opLoadC & "0000" & "00001100", -- LOAD s0, 0C
16#03A# => opLoadC & "0010" & "11110000", -- LOAD s2, F0
16#03B# => opLoadC & "0011" & "00000001", -- LOAD s3, 01
16#03C# => opSubR & "0001" & "0000----", -- SUB s1, s0 ; 03
16#03D# => opSubCyR & "0001" & "0010----", -- SUBCY s1, s2 ; 113
16#03E# => opSubCyR & "0001" & "0010----", -- SUBCY s1, s2 ; 22
16#03F# => opSubR & "0001" & "0011----", -- SUB s1, s3 ; 21
16#040# => opCompC & "0001" & "00100001", -- COMPARE s1, 21
16#041# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 5) Test shifts
-----------------------------------------------------------------
16#042# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test shift right
-----------------------------------------------------------------
16#043# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F ; 0F
16#044# => opShRot & "0000" & shRotR & shRotLd0,-- SR0 s0 ; 07
16#045# => opShRot & "0000" & shRotR & shRotLdM,-- SRX s0 ; 03
16#046# => opShRot & "0000" & shRotR & shRotLd1,-- SR1 s0 ; 81
16#047# => opShRot & "0000" & shRotR & shRotLdM,-- SRX s0 ; C0, C=1
16#048# => opShRot & "0000" & shRotR & shRotLdC,-- SRA s0 ; E0, C=0
16#049# => opShRot & "0000" & shRotR & shRotLdC,-- SRA s0 ; 70
16#04A# => opCompC & "0000" & "01110000", -- COMPARE s0, 70
16#04B# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test shift left
-----------------------------------------------------------------
16#04C# => opLoadC & "0001" & "11110000", -- LOAD s1, F0 ; FO
16#04D# => opShRot & "0001" & shRotL & shRotLd0,-- SL0 s1 ; E0
16#04E# => opShRot & "0001" & shRotL & shRotLdL,-- SLX s1 ; C0
16#04F# => opShRot & "0001" & shRotL & shRotLd1,-- SL1 s1 ; 81
16#050# => opShRot & "0001" & shRotL & shRotLdL,-- SLX s1 ; 03, C=1
16#051# => opShRot & "0001" & shRotL & shRotLdC,-- SLA s1 ; 07, C=0
16#052# => opShRot & "0001" & shRotL & shRotLdC,-- SLA s1 ; 0E
16#053# => opCompC & "0001" & "00001110", -- COMPARE s1, 0E
16#054# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 6) Test comparison operators
-----------------------------------------------------------------
16#055# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "COMPARE"
-----------------------------------------------------------------
16#056# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#057# => opCompC & "0000" & "11110000", -- COMPARE s0, F0 ; A < B => C=1
16#058# => brJump & brNC & "1111111101", -- JUMP NC, 3FD
16#059# => opCompC & "0000" & "11110000", -- COMPARE s0, F0 ; A < B => Z=0
16#05A# => brJump & brZ & "1111111101", -- JUMP Z, 3FD
16#05B# => opCompR & "0000" & "0000----", -- COMPARE s0, s0 ; A = B => Z=1
16#05C# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
16#05D# => opCompC & "0000" & "00001000", -- COMPARE s0, 08 ; A > B => C=0
16#05E# => brJump & brC & "1111111101", -- JUMP C, 3FD
16#05F# => opCompC & "0000" & "00001000", -- COMPARE s0, 08 ; A > B => Z=0
16#060# => brJump & brZ & "1111111101", -- JUMP Z, 3FD
-----------------------------------------------------------------
-- Test "TEST"
-----------------------------------------------------------------
16#061# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#062# => opTestC & "0000" & "11110000", -- TEST s0, F0 ; AND is 00 => Z=1
16#063# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
16#064# => opTestC & "0000" & "11111111", -- TEST s0, FF ; AND is 0F => Z=0
16#065# => brJump & brZ & "1111111101", -- JUMP Z, 3FD
--===============================================================
-- 7) Test INPUT and OUTPUT operators
-----------------------------------------------------------------
16#066# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "INPUT" and "OUTPUT" direct
--
-- The testbench should invert the word written at address FC.
-----------------------------------------------------------------
16#067# => opLoadC & "0000" & "10101010", -- LOAD s0, AA
16#068# => opOutputC & "0000" & "11111100", -- OUTPUT s0, FC
16#069# => opInputC & "0001" & "11111100", -- INPUT s1, FC
16#06A# => opCompC & "0001" & "01010101", -- COMPARE s1, 55
16#06B# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "INPUT" and "OUTPUT" indexed
-----------------------------------------------------------------
16#06C# => opLoadC & "0000" & "11001100", -- LOAD s0, CC
16#06D# => opLoadC & "0010" & "11111100", -- LOAD s2, FC
16#06E# => opOutputR & "0000" & "0010----", -- OUTPUT s0, (S2)
16#06F# => opInputR & "0001" & "0010----", -- INPUT s1, (S2)
16#070# => opCompC & "0001" & "00110011", -- COMPARE s1, 33
16#071# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 8) Test STORE and FETCH operators
-----------------------------------------------------------------
16#072# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "STORE" and "FETCH" direct
-----------------------------------------------------------------
16#073# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#074# => opStoreC & "0000" & "00000011", -- STORE s0, 03
16#075# => opFetchC & "0001" & "00000011", -- FETCH s1, 03
16#076# => opCompC & "0001" & "00001111", -- COMPARE s1, 0F
16#077# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "STORE" and "FETCH" indexed
-----------------------------------------------------------------
16#078# => opLoadC & "0000" & "11110000", -- LOAD s0, F0
16#079# => opLoadC & "0010" & "00000100", -- LOAD s2, 04
16#07A# => opStoreR & "0000" & "0010----", -- STORE s0, (S2)
16#07B# => opFetchR & "0001" & "0010----", -- FETCH s1, (S2)
16#07C# => opCompC & "0001" & "11110000", -- COMPARE s1, F0
16#07D# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 9) Test JUMP instructions
-----------------------------------------------------------------
16#07E# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "JUMP NC"
-----------------------------------------------------------------
16#07F# => opLoadC & "0000" & "11110000", -- LOAD s0, F0
16#080# => opAddC & "0000" & "00000000", -- ADD s0, 00 ; s0=F0, C=0, Z=0
16#081# => brJump & brNC & "0010000011", -- JUMP NC, 083
16#082# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "JUMP NZ"
-----------------------------------------------------------------
-- _continue1_:
16#083# => opAddC & "0000" & "00000000", -- ADD s0, 00 ; s0=F0, C=0, Z=0
16#084# => brJump & brNZ & "0010000110", -- JUMP NZ, 086
16#085# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "JUMP C"
-----------------------------------------------------------------
-- _continue2_:
16#086# => opAddC & "0000" & "11110000", -- ADD s0, F0 ; s0=E0, C=1, Z=0
16#087# => brJump & brC & "0010001001", -- JUMP C, 089
16#088# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "JUMP Z"
-----------------------------------------------------------------
-- _continue3_:
16#089# => opSubC & "0000" & "11100000", -- SUB s0, E0 ; s0=00, C=0, Z=1
16#08A# => brJump & brZ & "0010001100", -- JUMP Z, 08C
16#08B# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _continue4_:
16#08C# => opLoadR & "0000" & "0000----", -- NOP
--===============================================================
-- 10) Test call instructions
-----------------------------------------------------------------
16#08D# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- define subroutine
-----------------------------------------------------------------
16#08E# => brJump & brDo & "0010010010", -- JUMP 092
-- _subRetDo_:
16#08F# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#090# => brRet & brDo & "----------", -- RETURN
16#091# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "CALL"
-----------------------------------------------------------------
-- _continue5_:
16#092# => opLoadC & "0000" & "00000000", -- LOAD s0, 00
16#093# => opLoadC & "0001" & "11110000", -- LOAD s1, F0
16#094# => brCall & brDo & "0010001111", -- CALL 08F ; s0=01
-----------------------------------------------------------------
-- Test "CALL NC"
-----------------------------------------------------------------
16#095# => opAddC & "0001" & "00000000", -- ADD s1, 00 ; s1=F0, C=0, Z=0
16#096# => brCall & brNC & "0010001111", -- CALL NC, 08F ; s0=02
-----------------------------------------------------------------
-- Test "CALL NZ"
-----------------------------------------------------------------
16#097# => opAddC & "0001" & "00000000", -- ADD s1, 00 ; s1=F0, C=0, Z=0
16#098# => brCall & brNZ & "0010001111", -- CALL NZ, 08F ; s0=03
-----------------------------------------------------------------
-- Test "CALL C"
-----------------------------------------------------------------
16#099# => opAddC & "0001" & "11110000", -- ADD s1, F0 ; s0=E0, C=1, Z=0
16#09A# => brCall & brC & "0010001111", -- CALL C, 08F ; s0=04
-----------------------------------------------------------------
-- Test "CALL Z"
-----------------------------------------------------------------
16#09B# => opSubC & "0001" & "11100000", -- SUB s1, E0 ; s0=00, C=0, Z=1
16#09C# => brCall & brZ & "0010001111", -- CALL Z, 08F ; s0=05
16#09D# => opCompC & "0000" & "00000101", -- COMPARE s0, 05
16#09E# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 11) Test call return instructions
-----------------------------------------------------------------
16#09F# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- define subroutines
-----------------------------------------------------------------
16#0A0# => brJump & brDo & "0010101101", -- JUMP 0AD
-- _subRetNC_:
16#0A1# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0A2# => brRet & brDo & "----------", -- RETURN NC
16#0A3# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _subRetNZ_:
16#0A4# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0A5# => brRet & brDo & "----------", -- RETURN NZ
16#0A6# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _subRetC_:
16#0A7# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0A8# => brRet & brDo & "----------", -- RETURN C
16#0A9# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _subRetZ_:
16#0AA# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0AB# => brRet & brDo & "----------", -- RETURN Z
16#0AC# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "RETURN NC"
-----------------------------------------------------------------
-- _continue6_:
16#0AD# => opLoadC & "0000" & "00000000", -- LOAD s0, 00 ; increment will give C=0, Z=0
16#0AE# => brCall & brNC & "0010100001", -- CALL NC, 0A1
-----------------------------------------------------------------
-- Test "RETURN NZ"
-----------------------------------------------------------------
16#0AF# => opLoadC & "0000" & "00000000", -- LOAD s0, 00 ; increment will give C=0, Z=0
16#0B0# => brCall & brNZ & "0010100100", -- CALL NZ, 0A4
-----------------------------------------------------------------
-- Test "RETURN C"
-----------------------------------------------------------------
16#0B1# => opLoadC & "0000" & "11111111", -- LOAD s0, FF ; increment will give C=1, Z=1
16#0B2# => brCall & brC & "0010100111", -- CALL C, 0A7
-----------------------------------------------------------------
-- Test "RETURN Z"
-----------------------------------------------------------------
16#0B3# => opLoadC & "0000" & "11111111", -- LOAD s0, FF ; increment will give C=1, Z=1
16#0B4# => brCall & brZ & "0010101010", -- CALL Z, 0AA
--===============================================================
-- End of tests
--
-- The testbench should react if value 1 is written to address 00.
-----------------------------------------------------------------
16#0B5# => opLoadC & "0000" & "00000001", -- LOAD s0, 01
16#0B6# => opOutputC & "0000" & "00000000", -- OUTPUT s0, 00
16#0B7# => brJump & brDo & "1111111111", -- JUMP 3FF
--===============================================================
-- Assert error
--
-- The testbench should react if value 0 is written to address 00.
-----------------------------------------------------------------
-- _error_:
16#3FD# => opLoadC & "0000" & "00000000", -- LOAD s0, 00
16#3FE# => opOutputC & "0000" & "00000000", -- OUTPUT s0, 00
--===============================================================
-- End of instruction memory
-----------------------------------------------------------------
-- _endOfMemory_:
16#3FF# => brJump & brDo & "1111111111", -- JUMP 3FF
others => (others => '0')
);
BEGIN
process (clock)
begin
if rising_edge(clock) then
if en = '1' then
dataOut <= memoryArray(to_integer(address));
end if;
end if;
end process;
END ARCHITECTURE mapped;

View File

@@ -0,0 +1,24 @@
ARCHITECTURE RTL OF programCounter IS
signal pCounter: unsigned(progCounter'range);
BEGIN
updateProgramCounter: process(reset, clock)
begin
if reset = '1' then
pCounter <= (others => '0');
elsif rising_edge(clock) then
if incPC = '1' then
pCounter <= pCounter + 1;
elsif loadInstrAddress = '1' then
pCounter <= instrAddress;
elsif loadStoredPC = '1' then
pCounter <= storedProgCounter;
end if;
end if;
end process updateProgramCounter;
progCounter <= pCounter;
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,26 @@
ARCHITECTURE RTL OF registerFile IS
subtype registerType is signed(registersIn'range);
type registerArrayType is array (0 to 2**registerAddressBitNb-1) of registerType;
signal registerArray : registerArrayType;
BEGIN
------------------------------------------------------------------------------
-- write to registers
updateRegister: process(reset, clock)
begin
if reset = '1' then
registerArray <= (others => (others => '0'));
elsif rising_edge(clock) then
if regWrite = '1' then
registerArray(to_integer(addrA)) <= registersIn;
end if;
end if;
end process updateRegister;
------------------------------------------------------------------------------
-- read from registers
opA <= registerArray(to_integer(addrA));
opB <= registerArray(to_integer(addrB));
END ARCHITECTURE RTL;

View File

@@ -0,0 +1,21 @@
ARCHITECTURE empty OF programRom IS
subtype memoryWordType is std_ulogic_vector(dataOut'range);
type memoryArrayType is array (0 to 2**address'length-1) of memoryWordType;
signal memoryArray : memoryArrayType := (
others => (others => '0')
);
BEGIN
process (clock)
begin
if rising_edge(clock) then
if en = '1' then
dataOut <= (others => '0');
end if;
end if;
end process;
END ARCHITECTURE empty;

View File

@@ -0,0 +1,431 @@
ARCHITECTURE mapped OF programRom IS
subtype opCodeType is std_ulogic_vector(5 downto 0);
constant opLoadC : opCodeType := "000000";
constant opLoadR : opCodeType := "000001";
constant opInputC : opCodeType := "000100";
constant opInputR : opCodeType := "000101";
constant opFetchC : opCodeType := "000110";
constant opFetchR : opCodeType := "000111";
constant opAndC : opCodeType := "001010";
constant opAndR : opCodeType := "001011";
constant opOrC : opCodeType := "001100";
constant opOrR : opCodeType := "001101";
constant opXorC : opCodeType := "001110";
constant opXorR : opCodeType := "001111";
constant opTestC : opCodeType := "010010";
constant opTestR : opCodeType := "010011";
constant opCompC : opCodeType := "010100";
constant opCompR : opCodeType := "010101";
constant opAddC : opCodeType := "011000";
constant opAddR : opCodeType := "011001";
constant opAddCyC : opCodeType := "011010";
constant opAddCyR : opCodeType := "011011";
constant opSubC : opCodeType := "011100";
constant opSubR : opCodeType := "011101";
constant opSubCyC : opCodeType := "011110";
constant opSubCyR : opCodeType := "011111";
constant opShRot : opCodeType := "100000";
constant opOutputC : opCodeType := "101100";
constant opOutputR : opCodeType := "101101";
constant opStoreC : opCodeType := "101110";
constant opStoreR : opCodeType := "101111";
subtype shRotCinType is std_ulogic_vector(2 downto 0);
constant shRotLdC : shRotCinType := "00-";
constant shRotLdM : shRotCinType := "01-";
constant shRotLdL : shRotCinType := "10-";
constant shRotLd0 : shRotCinType := "110";
constant shRotLd1 : shRotCinType := "111";
constant registerAddressBitNb : positive := 4;
constant shRotPadLength : positive
:= dataOut'length - opCodeType'length - registerAddressBitNb
- 1 - shRotCinType'length;
subtype shRotDirType is std_ulogic_vector(1+shRotPadLength-1 downto 0);
constant shRotL : shRotDirType := (0 => '0', others => '-');
constant shRotR : shRotDirType := (0 => '1', others => '-');
subtype branchCodeType is std_ulogic_vector(4 downto 0);
constant brRet : branchCodeType := "10101";
constant brCall : branchCodeType := "11000";
constant brJump : branchCodeType := "11010";
constant brReti : branchCodeType := "11100";
constant brEni : branchCodeType := "11110";
subtype branchConditionType is std_ulogic_vector(2 downto 0);
constant brDo : branchConditionType := "000";
constant brZ : branchConditionType := "100";
constant brNZ : branchConditionType := "101";
constant brC : branchConditionType := "110";
constant brNC : branchConditionType := "111";
subtype memoryWordType is std_ulogic_vector(dataOut'range);
type memoryArrayType is array (0 to 2**address'length-1) of memoryWordType;
signal memoryArray : memoryArrayType := (
--===============================================================
-- 1) Test logical operations with direct values
-----------------------------------------------------------------
16#000# => opLoadC & "0111" & "00000001", -- LOAD s7, 01
-----------------------------------------------------------------
-- Test "LOAD", "AND"
-----------------------------------------------------------------
16#001# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#002# => opAndC & "0000" & "00110011", -- AND s0, 33
16#003# => opCompC & "0000" & "00000011", -- COMPARE s0, 03
16#004# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "OR"
-----------------------------------------------------------------
16#005# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#006# => opOrC & "0001" & "00110011", -- OR s1, 33
16#007# => opCompC & "0001" & "00111111", -- COMPARE s1, 3F
16#008# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "XOR"
-----------------------------------------------------------------
16#009# => opLoadC & "0010" & "00001111", -- LOAD s2, 0F
16#00A# => opXorC & "0010" & "00110011", -- XOR s2, 33
16#00B# => opCompC & "0010" & "00111100", -- COMPARE s2, 3C
16#00C# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 2) Test logical operations with registers
-----------------------------------------------------------------
16#00D# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "LOAD"
-----------------------------------------------------------------
16#00E# => opLoadC & "0000" & "00110011", -- LOAD s0, 33
16#00F# => opLoadR & "0011" & "0000----", -- LOAD s3, s0
16#010# => opCompC & "0011" & "00110011", -- COMPARE s3, 33
16#011# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "AND"
-----------------------------------------------------------------
16#012# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#013# => opAndR & "0000" & "0011----", -- AND s0, s3
16#014# => opCompC & "0000" & "00000011", -- COMPARE s0, 03
16#015# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "OR"
-----------------------------------------------------------------
16#016# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#017# => opOrR & "0001" & "0011----", -- OR s1, s3
16#018# => opCompC & "0001" & "00111111", -- COMPARE s1, 3F
16#019# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "XOR"
-----------------------------------------------------------------
16#01A# => opLoadC & "0010" & "00001111", -- LOAD s2, 0F
16#01B# => opXorR & "0010" & "0011----", -- XOR s2, s3
16#01C# => opCompC & "0010" & "00111100", -- COMPARE s2, 3C
16#01D# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 3) Test arithmetic operations with constants
-----------------------------------------------------------------
16#01E# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "ADD" and "ADDCY"
-----------------------------------------------------------------
16#01F# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#020# => opAddC & "0000" & "00110001", -- ADD s0, 31 ; 40
16#021# => opAddCyC & "0000" & "11110000", -- ADDCY s0, F0 ; 130
16#022# => opAddCyC & "0000" & "11110000", -- ADDCY s0, F0 ; 121
16#023# => opAddC & "0000" & "00001111", -- ADD s0, 0F ; 30
16#024# => opCompC & "0000" & "00110000", -- COMPARE s0, 30
16#025# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "SUB" and "SUBCY"
-----------------------------------------------------------------
16#026# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#027# => opSubC & "0001" & "00001100", -- SUB s1, 0C ; 03
16#028# => opSubCyC & "0001" & "11110000", -- SUBCY s1, F0 ; 113
16#029# => opSubCyC & "0001" & "11110000", -- SUBCY s1, F0 ; 22
16#02A# => opSubC & "0001" & "00000001", -- SUB s1, 01 ; 21
16#02B# => opCompC & "0001" & "00100001", -- COMPARE s1, 21
16#02C# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 4) Test arithmetic operations with registers
-----------------------------------------------------------------
16#02D# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "ADD" and "ADDCY"
-----------------------------------------------------------------
16#02E# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#02F# => opLoadC & "0001" & "00110001", -- LOAD s1, 31
16#030# => opLoadC & "0010" & "11110000", -- LOAD s2, F0
16#031# => opLoadC & "0011" & "00001111", -- LOAD s3, 0F
16#032# => opAddR & "0000" & "0001----", -- ADD s0, s1 ; 40
16#033# => opAddCyR & "0000" & "0010----", -- ADDCY s0, s2 ; 130
16#034# => opAddCyR & "0000" & "0010----", -- ADDCY s0, s2 ; 121
16#035# => opAddR & "0000" & "0011----", -- ADD s0, s3 ; 30
16#036# => opCompC & "0000" & "00110000", -- COMPARE s0, 30
16#037# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "SUB" and "SUBCY"
-----------------------------------------------------------------
16#038# => opLoadC & "0001" & "00001111", -- LOAD s1, 0F
16#039# => opLoadC & "0000" & "00001100", -- LOAD s0, 0C
16#03A# => opLoadC & "0010" & "11110000", -- LOAD s2, F0
16#03B# => opLoadC & "0011" & "00000001", -- LOAD s3, 01
16#03C# => opSubR & "0001" & "0000----", -- SUB s1, s0 ; 03
16#03D# => opSubCyR & "0001" & "0010----", -- SUBCY s1, s2 ; 113
16#03E# => opSubCyR & "0001" & "0010----", -- SUBCY s1, s2 ; 22
16#03F# => opSubR & "0001" & "0011----", -- SUB s1, s3 ; 21
16#040# => opCompC & "0001" & "00100001", -- COMPARE s1, 21
16#041# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 5) Test shifts
-----------------------------------------------------------------
16#042# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test shift right
-----------------------------------------------------------------
16#043# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F ; 0F
16#044# => opShRot & "0000" & shRotR & shRotLd0,-- SR0 s0 ; 07
16#045# => opShRot & "0000" & shRotR & shRotLdM,-- SRX s0 ; 03
16#046# => opShRot & "0000" & shRotR & shRotLd1,-- SR1 s0 ; 81
16#047# => opShRot & "0000" & shRotR & shRotLdM,-- SRX s0 ; C0, C=1
16#048# => opShRot & "0000" & shRotR & shRotLdC,-- SRA s0 ; E0, C=0
16#049# => opShRot & "0000" & shRotR & shRotLdC,-- SRA s0 ; 70
16#04A# => opCompC & "0000" & "01110000", -- COMPARE s0, 70
16#04B# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test shift left
-----------------------------------------------------------------
16#04C# => opLoadC & "0001" & "11110000", -- LOAD s1, F0 ; FO
16#04D# => opShRot & "0001" & shRotL & shRotLd0,-- SL0 s1 ; E0
16#04E# => opShRot & "0001" & shRotL & shRotLdL,-- SLX s1 ; C0
16#04F# => opShRot & "0001" & shRotL & shRotLd1,-- SL1 s1 ; 81
16#050# => opShRot & "0001" & shRotL & shRotLdL,-- SLX s1 ; 03, C=1
16#051# => opShRot & "0001" & shRotL & shRotLdC,-- SLA s1 ; 07, C=0
16#052# => opShRot & "0001" & shRotL & shRotLdC,-- SLA s1 ; 0E
16#053# => opCompC & "0001" & "00001110", -- COMPARE s1, 0E
16#054# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 6) Test comparison operators
-----------------------------------------------------------------
16#055# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "COMPARE"
-----------------------------------------------------------------
16#056# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#057# => opCompC & "0000" & "11110000", -- COMPARE s0, F0 ; A < B => C=1
16#058# => brJump & brNC & "1111111101", -- JUMP NC, 3FD
16#059# => opCompC & "0000" & "11110000", -- COMPARE s0, F0 ; A < B => Z=0
16#05A# => brJump & brZ & "1111111101", -- JUMP Z, 3FD
16#05B# => opCompR & "0000" & "0000----", -- COMPARE s0, s0 ; A = B => Z=1
16#05C# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
16#05D# => opCompC & "0000" & "00001000", -- COMPARE s0, 08 ; A > B => C=0
16#05E# => brJump & brC & "1111111101", -- JUMP C, 3FD
16#05F# => opCompC & "0000" & "00001000", -- COMPARE s0, 08 ; A > B => Z=0
16#060# => brJump & brZ & "1111111101", -- JUMP Z, 3FD
-----------------------------------------------------------------
-- Test "TEST"
-----------------------------------------------------------------
16#061# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#062# => opTestC & "0000" & "11110000", -- TEST s0, F0 ; AND is 00 => Z=1
16#063# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
16#064# => opTestC & "0000" & "11111111", -- TEST s0, FF ; AND is 0F => Z=0
16#065# => brJump & brZ & "1111111101", -- JUMP Z, 3FD
--===============================================================
-- 7) Test INPUT and OUTPUT operators
-----------------------------------------------------------------
16#066# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "INPUT" and "OUTPUT" direct
--
-- The testbench should invert the word written at address FC.
-----------------------------------------------------------------
16#067# => opLoadC & "0000" & "10101010", -- LOAD s0, AA
16#068# => opOutputC & "0000" & "11111100", -- OUTPUT s0, FC
16#069# => opInputC & "0001" & "11111100", -- INPUT s1, FC
16#06A# => opCompC & "0001" & "01010101", -- COMPARE s1, 55
16#06B# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "INPUT" and "OUTPUT" indexed
-----------------------------------------------------------------
16#06C# => opLoadC & "0000" & "11001100", -- LOAD s0, CC
16#06D# => opLoadC & "0010" & "11111100", -- LOAD s2, FC
16#06E# => opOutputR & "0000" & "0010----", -- OUTPUT s0, (S2)
16#06F# => opInputR & "0001" & "0010----", -- INPUT s1, (S2)
16#070# => opCompC & "0001" & "00110011", -- COMPARE s1, 33
16#071# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 8) Test STORE and FETCH operators
-----------------------------------------------------------------
16#072# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "STORE" and "FETCH" direct
-----------------------------------------------------------------
16#073# => opLoadC & "0000" & "00001111", -- LOAD s0, 0F
16#074# => opStoreC & "0000" & "00000011", -- STORE s0, 03
16#075# => opFetchC & "0001" & "00000011", -- FETCH s1, 03
16#076# => opCompC & "0001" & "00001111", -- COMPARE s1, 0F
16#077# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
-----------------------------------------------------------------
-- Test "STORE" and "FETCH" indexed
-----------------------------------------------------------------
16#078# => opLoadC & "0000" & "11110000", -- LOAD s0, F0
16#079# => opLoadC & "0010" & "00000100", -- LOAD s2, 04
16#07A# => opStoreR & "0000" & "0010----", -- STORE s0, (S2)
16#07B# => opFetchR & "0001" & "0010----", -- FETCH s1, (S2)
16#07C# => opCompC & "0001" & "11110000", -- COMPARE s1, F0
16#07D# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 9) Test JUMP instructions
-----------------------------------------------------------------
16#07E# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- Test "JUMP NC"
-----------------------------------------------------------------
16#07F# => opLoadC & "0000" & "11110000", -- LOAD s0, F0
16#080# => opAddC & "0000" & "00000000", -- ADD s0, 00 ; s0=F0, C=0, Z=0
16#081# => brJump & brNC & "0010000011", -- JUMP NC, 083
16#082# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "JUMP NZ"
-----------------------------------------------------------------
-- _continue1_:
16#083# => opAddC & "0000" & "00000000", -- ADD s0, 00 ; s0=F0, C=0, Z=0
16#084# => brJump & brNZ & "0010000110", -- JUMP NZ, 086
16#085# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "JUMP C"
-----------------------------------------------------------------
-- _continue2_:
16#086# => opAddC & "0000" & "11110000", -- ADD s0, F0 ; s0=E0, C=1, Z=0
16#087# => brJump & brC & "0010001001", -- JUMP C, 089
16#088# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "JUMP Z"
-----------------------------------------------------------------
-- _continue3_:
16#089# => opSubC & "0000" & "11100000", -- SUB s0, E0 ; s0=00, C=0, Z=1
16#08A# => brJump & brZ & "0010001100", -- JUMP Z, 08C
16#08B# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _continue4_:
16#08C# => opLoadR & "0000" & "0000----", -- NOP
--===============================================================
-- 10) Test call instructions
-----------------------------------------------------------------
16#08D# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- define subroutine
-----------------------------------------------------------------
16#08E# => brJump & brDo & "0010010010", -- JUMP 092
-- _subRetDo_:
16#08F# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#090# => brRet & brDo & "----------", -- RETURN
16#091# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "CALL"
-----------------------------------------------------------------
-- _continue5_:
16#092# => opLoadC & "0000" & "00000000", -- LOAD s0, 00
16#093# => opLoadC & "0001" & "11110000", -- LOAD s1, F0
16#094# => brCall & brDo & "0010001111", -- CALL 08F ; s0=01
-----------------------------------------------------------------
-- Test "CALL NC"
-----------------------------------------------------------------
16#095# => opAddC & "0001" & "00000000", -- ADD s1, 00 ; s1=F0, C=0, Z=0
16#096# => brCall & brNC & "0010001111", -- CALL NC, 08F ; s0=02
-----------------------------------------------------------------
-- Test "CALL NZ"
-----------------------------------------------------------------
16#097# => opAddC & "0001" & "00000000", -- ADD s1, 00 ; s1=F0, C=0, Z=0
16#098# => brCall & brNZ & "0010001111", -- CALL NZ, 08F ; s0=03
-----------------------------------------------------------------
-- Test "CALL C"
-----------------------------------------------------------------
16#099# => opAddC & "0001" & "11110000", -- ADD s1, F0 ; s0=E0, C=1, Z=0
16#09A# => brCall & brC & "0010001111", -- CALL C, 08F ; s0=04
-----------------------------------------------------------------
-- Test "CALL Z"
-----------------------------------------------------------------
16#09B# => opSubC & "0001" & "11100000", -- SUB s1, E0 ; s0=00, C=0, Z=1
16#09C# => brCall & brZ & "0010001111", -- CALL Z, 08F ; s0=05
16#09D# => opCompC & "0000" & "00000101", -- COMPARE s0, 05
16#09E# => brJump & brNZ & "1111111101", -- JUMP NZ, 3FD
--===============================================================
-- 11) Test call return instructions
-----------------------------------------------------------------
16#09F# => opAddC & "0111" & "00000001", -- ADD s7, 01
-----------------------------------------------------------------
-- define subroutines
-----------------------------------------------------------------
16#0A0# => brJump & brDo & "0010101101", -- JUMP 0AD
-- _subRetNC_:
16#0A1# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0A2# => brRet & brDo & "----------", -- RETURN NC
16#0A3# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _subRetNZ_:
16#0A4# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0A5# => brRet & brDo & "----------", -- RETURN NZ
16#0A6# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _subRetC_:
16#0A7# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0A8# => brRet & brDo & "----------", -- RETURN C
16#0A9# => brJump & brDo & "1111111101", -- JUMP 3FD
-- _subRetZ_:
16#0AA# => opAddC & "0000" & "00000001", -- ADD s0, 01
16#0AB# => brRet & brDo & "----------", -- RETURN Z
16#0AC# => brJump & brDo & "1111111101", -- JUMP 3FD
-----------------------------------------------------------------
-- Test "RETURN NC"
-----------------------------------------------------------------
-- _continue6_:
16#0AD# => opLoadC & "0000" & "00000000", -- LOAD s0, 00 ; increment will give C=0, Z=0
16#0AE# => brCall & brNC & "0010100001", -- CALL NC, 0A1
-----------------------------------------------------------------
-- Test "RETURN NZ"
-----------------------------------------------------------------
16#0AF# => opLoadC & "0000" & "00000000", -- LOAD s0, 00 ; increment will give C=0, Z=0
16#0B0# => brCall & brNZ & "0010100100", -- CALL NZ, 0A4
-----------------------------------------------------------------
-- Test "RETURN C"
-----------------------------------------------------------------
16#0B1# => opLoadC & "0000" & "11111111", -- LOAD s0, FF ; increment will give C=1, Z=1
16#0B2# => brCall & brC & "0010100111", -- CALL C, 0A7
-----------------------------------------------------------------
-- Test "RETURN Z"
-----------------------------------------------------------------
16#0B3# => opLoadC & "0000" & "11111111", -- LOAD s0, FF ; increment will give C=1, Z=1
16#0B4# => brCall & brZ & "0010101010", -- CALL Z, 0AA
--===============================================================
-- End of tests
--
-- The testbench should react if value 1 is written to address 00.
-----------------------------------------------------------------
16#0B5# => opLoadC & "0000" & "00000001", -- LOAD s0, 01
16#0B6# => opOutputC & "0000" & "00000000", -- OUTPUT s0, 00
16#0B7# => brJump & brDo & "1111111111", -- JUMP 3FF
--===============================================================
-- Assert error
--
-- The testbench should react if value 0 is written to address 00.
-----------------------------------------------------------------
-- _error_:
16#3FD# => opLoadC & "0000" & "00000000", -- LOAD s0, 00
16#3FE# => opOutputC & "0000" & "00000000", -- OUTPUT s0, 00
--===============================================================
-- End of instruction memory
-----------------------------------------------------------------
-- _endOfMemory_:
16#3FF# => brJump & brDo & "1111111111", -- JUMP 3FF
others => (others => '0')
);
BEGIN
process (clock)
begin
if rising_edge(clock) then
if en = '1' then
dataOut <= memoryArray(to_integer(address));
end if;
end if;
end process;
END ARCHITECTURE mapped;

View File

@@ -0,0 +1,21 @@
ARCHITECTURE RTL OF scratchpad IS
subtype memoryWordType is signed(dataOut'range);
type memoryArrayType is array (0 to 2**addr'length-1) of memoryWordType;
signal memoryArray : memoryArrayType;
BEGIN
process (clock)
begin
if rising_edge(clock) then
if write = '1' then
memoryArray(to_integer(addr)) <= dataIn;
end if;
end if;
end process;
dataOut <= memoryArray(to_integer(addr));
END ARCHITECTURE RTL;