Archived
1
0

Initial commit

This commit is contained in:
github-classroom[bot]
2024-02-23 13:01:05 +00:00
committed by GitHub
commit d212040c30
1914 changed files with 1290006 additions and 0 deletions

View File

@ -0,0 +1,13 @@
# NEORV32 Bit-Manipulation `B` Extension
:warning: The RISC-V bit-manipulation extension is frozen but not yet officially ratified.
:warning: The NEORV32 bit manipulation extensions `B` only supports the `Zbb` and `Zba` sub-extension
(basic bit-manipulation operation) yet.
The provided test program `main.c` verifies all currently implemented instruction by checking the results against a pure-software emulation model.
The emulation functions as well as the available **intrinsics** for the sub-extension are located in `neorv32_b_extension_intrinsics.h`.
:information_source: More information regarding the RISC-V bit manipulation extension can be found in the officail GitHub repo:
[github.com/riscv/riscv-bitmanip](https://github.com/riscv/riscv-bitmanip).
The specification of the bit-manipulation spec supported by the NEORV32 can be found in `docs/references/bitmanip-draft.pdf`.

View File

@ -0,0 +1,40 @@
#################################################################################################
# << NEORV32 - Application Makefile >> #
# ********************************************************************************************* #
# Make sure to add the RISC-V GCC compiler's bin folder to your PATH environment variable. #
# ********************************************************************************************* #
# BSD 3-Clause License #
# #
# Copyright (c) 2021, Stephan Nolting. All rights reserved. #
# #
# Redistribution and use in source and binary forms, with or without modification, are #
# permitted provided that the following conditions are met: #
# #
# 1. Redistributions of source code must retain the above copyright notice, this list of #
# conditions and the following disclaimer. #
# #
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
# conditions and the following disclaimer in the documentation and/or other materials #
# provided with the distribution. #
# #
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
# endorse or promote products derived from this software without specific prior written #
# permission. #
# #
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
# OF THE POSSIBILITY OF SUCH DAMAGE. #
# ********************************************************************************************* #
# The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
#################################################################################################
# Modify this variable to fit your NEORV32 setup (neorv32 home folder)
NEORV32_HOME ?= ../../..
include $(NEORV32_HOME)/sw/common/common.mk

View File

@ -0,0 +1,903 @@
// #################################################################################################
// # << NEORV32 - Intrinsics + Emulation Functions for the CPU B extension >> #
// # ********************************************************************************************* #
// # The intrinsics provided by this library allow to use the hardware bit manipulation unit of #
// # the RISC-V B CPU extension without the need for support by the compiler. #
// # ********************************************************************************************* #
// # BSD 3-Clause License #
// # #
// # Copyright (c) 2021, Stephan Nolting. All rights reserved. #
// # #
// # Redistribution and use in source and binary forms, with or without modification, are #
// # permitted provided that the following conditions are met: #
// # #
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
// # conditions and the following disclaimer. #
// # #
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
// # conditions and the following disclaimer in the documentation and/or other materials #
// # provided with the distribution. #
// # #
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
// # endorse or promote products derived from this software without specific prior written #
// # permission. #
// # #
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
// # ********************************************************************************************* #
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
// #################################################################################################
/**********************************************************************//**
* @file bitmanip_test/neorv32_b_extension_intrinsics.h
* @author Stephan Nolting
* @brief "Intrinsic" library for the NEORV32 bit manipulation B extension.
* Also provides emulation functions for all intrinsics (functionality re-built in pure software).
*
* @warning This library is just a temporary fall-back until the B extension is supported by the upstream RISC-V GCC port.
**************************************************************************/
#ifndef neorv32_b_extension_intrinsics_h
#define neorv32_b_extension_intrinsics_h
// ################################################################################################
// "Intrinsics"
// ################################################################################################
// ================================================================================================
// Zbb - Base instructions
// ================================================================================================
/**********************************************************************//**
* Intrinsic: Bit manipulation CLZ (count leading zeros) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Number of leading zeros in source operand.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_clz(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// clz a0, a0
CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00000, a0, 0b001, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation CTZ (count trailing zeros) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Number of trailing zeros in source operand.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_ctz(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// ctz a0, a0
CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00001, a0, 0b001, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation CPOP (count set bits) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Number of set bits in source operand.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_cpop(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// cpop a0, a0
CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00010, a0, 0b001, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation SEXT.B (sign-extend byte) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Sign extended byte (operand(7:0)).
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sextb(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// sext.b a0, a0
CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00100, a0, 0b001, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation SEXT.H (sign-extend half-word) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Sign-extended half-word (operand(15:0)).
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sexth(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// sext.h a0, a0
CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00101, a0, 0b001, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ZEXT.H (zero-extend half-word) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Zero-extended half-word (operand(15:0)).
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_zexth(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// sext.h a0, a0
CUSTOM_INSTR_R1_TYPE(0b0000100, 0b00000, a0, 0b100, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MIN (select signed minimum) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Signed minimum.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_min(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// min a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b100, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MINU (select unsigned minimum) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Unsigned minimum.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_minu(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// minu a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b101, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MAX (select signed maximum) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Signed maximum.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_max(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// max a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b110, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MAXU (select unsigned maximum) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Unsigned maximum.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_maxu(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// maxu a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b111, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ANDN (logical and-negate) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 1 AND NOT operand 2.
**************************************************************************/
inline inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_andn(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// andn a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0100000, a1, a0, 0b111, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ORN (logical or-negate) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 1 OR NOT operand 2.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_orn(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// orn a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0100000, a1, a0, 0b110, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation XNOR (logical xor-negate) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 1 XOR NOT operand 2.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_xnor(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// xnor a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0100000, a1, a0, 0b100, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ROL (rotate-left) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 1 rotated left by operand_2(4:0) positions.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rol(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// rol a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0110000, a1, a0, 0b001, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ROR (rotate-right) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 1 rotated right by operand_2(4:0) positions.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_ror(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// ror a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0110000, a1, a0, 0b101, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation RORI (rotate-right) by 20 positions. [B.Zbb]
* @warning Fixed shift amount (20) for now.
*
* @param[in] rs1 Source operand 1 (a0).
* @return Operand 1 rotated right by 20 positions.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rori20(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// rori a0, a0, 20
CUSTOM_INSTR_R1_TYPE(0b0110000, 0b10100, a0, 0b101, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ORC.B (or-combine byte) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return OR-combined bytes of operand 1.
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_orcb(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// gorci a0, a0, 7 (pseudo-instruction: orc.b a0, a0)
CUSTOM_INSTR_R1_TYPE(0b0010100, 0b00111, a0, 0b101, a0, 0b0010011);
return result;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation REV8 (byte-swap) [B.Zbb]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Byte swap of operand 1
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rev8(uint32_t rs1) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
// grevi a0, a0, -8 (pseudo-instruction: rev8 a0, a0)
CUSTOM_INSTR_R1_TYPE(0b0110100, 0b11000, a0, 0b101, a0, 0b0010011);
return result;
}
// ================================================================================================
// Zbb - Base instructions
// ================================================================================================
/**********************************************************************//**
* Intrinsic: Address generation instructions SH1ADD (add with logical-1-shift) [B.Zba]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 2 + (Operand 1 << 1)
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh1add(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// sh1add a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0010000, a1, a0, 0b010, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Address generation instructions SH2ADD (add with logical-2-shift) [B.Zba]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 2 + (Operand 1 << 2)
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh2add(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// sh2add a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0010000, a1, a0, 0b100, a0, 0b0110011);
return result;
}
/**********************************************************************//**
* Intrinsic: Address generation instructions SH1ADD (add with logical-3-shift) [B.Zba]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 2 (a0).
* @return Operand 2 + (Operand 1 << 3)
**************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh3add(uint32_t rs1, uint32_t rs2) {
register uint32_t result __asm__ ("a0");
register uint32_t tmp_a __asm__ ("a0") = rs1;
register uint32_t tmp_b __asm__ ("a1") = rs2;
// dummy instruction to prevent GCC "constprop" optimization
asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// sh3add a0, a0, a1
CUSTOM_INSTR_R2_TYPE(0b0010000, a1, a0, 0b110, a0, 0b0110011);
return result;
}
// ################################################################################################
// Emulation functions
// ################################################################################################
// ================================================================================================
// Zbb - Base instructions
// ================================================================================================
/**********************************************************************//**
* Intrinsic: Bit manipulation CLZ (count leading zeros) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Number of leading zeros in source operand.
**************************************************************************/
uint32_t riscv_emulate_clz(uint32_t rs1) {
uint32_t sreg = rs1;
uint32_t cnt = 0;
while(1) {
if (sreg & 0x80000000UL) {
break;
}
else {
sreg <<= 1;
cnt++;
}
}
return cnt;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation CTZ (count trailing zeros) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Number of trailing zeros in source operand.
**************************************************************************/
uint32_t riscv_emulate_ctz(uint32_t rs1) {
uint32_t sreg = rs1;
uint32_t cnt = 0;
while(1) {
if (sreg & 1) {
break;
}
else {
sreg >>= 1;
cnt++;
}
}
return cnt;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation CPOP (population count) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Number of set bits in source operand.
**************************************************************************/
uint32_t riscv_emulate_cpop(uint32_t rs1) {
uint32_t sreg = rs1;
uint32_t cnt = 0;
int i;
for (i=0; i<32; i++) {
if (sreg & 1) {
cnt++;
}
sreg >>= 1;
}
return cnt;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation SEXT.B (sign-extend byte) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Sign-extended byte (operand(7:0)).
**************************************************************************/
uint32_t riscv_emulate_sextb(uint32_t rs1) {
uint32_t tmp = rs1 & 0xff;
if (tmp & 0x80) {
tmp |= 0xFFFFFF00UL;
}
return tmp;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation SEXT.H (sign-extend half-word) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Sign-extended half-word (operand(15:0)).
**************************************************************************/
uint32_t riscv_emulate_sexth(uint32_t rs1) {
uint32_t tmp = rs1 & 0xffff;
if (tmp & 0x8000) {
tmp |= 0xFFFF0000UL;
}
return tmp;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ZEXT.H (zero-extend half-word) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Zero-extended half-word (operand(15:0)).
**************************************************************************/
uint32_t riscv_emulate_zexth(uint32_t rs1) {
return rs1 & 0x0000FFFFUL;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MIN (select signed minimum) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Signed minimum.
**************************************************************************/
uint32_t riscv_emulate_min(uint32_t rs1, uint32_t rs2) {
int32_t s_opa = (int32_t)rs1;
int32_t s_opb = (int32_t)rs2;
if (s_opa < s_opb) {
return rs1;
}
else {
return rs2;
}
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MINU (select unsigned minimum) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Unsigned minimum.
**************************************************************************/
uint32_t riscv_emulate_minu(uint32_t rs1, uint32_t rs2) {
if (rs1 < rs2) {
return rs1;
}
else {
return rs2;
}
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MAX (select signed maximum) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Signed maximum.
**************************************************************************/
uint32_t riscv_emulate_max(uint32_t rs1, uint32_t rs2) {
int32_t s_opa = (int32_t)rs1;
int32_t s_opb = (int32_t)rs2;
if (s_opa < s_opb) {
return rs2;
}
else {
return rs1;
}
}
/**********************************************************************//**
* Intrinsic: Bit manipulation MAXU (select unsigned maximum) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Unsigned maximum.
**************************************************************************/
uint32_t riscv_emulate_maxu(uint32_t rs1, uint32_t rs2) {
if (rs1 < rs2) {
return rs2;
}
else {
return rs1;
}
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ANDN (logical and-negate) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 1 AND NOT operand 2.
**************************************************************************/
uint32_t riscv_emulate_andn(uint32_t rs1, uint32_t rs2) {
return rs1 & (~rs2);
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ORN (logical or-negate) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 1 OR NOT operand 2.
**************************************************************************/
uint32_t riscv_emulate_orn(uint32_t rs1, uint32_t rs2) {
return rs1 | (~rs2);
}
/**********************************************************************//**
* Intrinsic: Bit manipulation XNOR (logical xor-negate) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 1 XOR NOT operand 2.
**************************************************************************/
uint32_t riscv_emulate_xnor(uint32_t rs1, uint32_t rs2) {
return rs1 ^ (~rs2);
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ROL (rotate-left) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 1 rotated left by operand_2(4:0) positions.
**************************************************************************/
uint32_t riscv_emulate_rol(uint32_t rs1, uint32_t rs2) {
uint32_t shamt = rs2 & 0x1f;
uint32_t tmp_a = rs1 << shamt;
uint32_t tmp_b = rs1 >> (32-shamt);
return tmp_a | tmp_b;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ROR (rotate-right) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 1 rotated right by operand_2(4:0) positions.
**************************************************************************/
uint32_t riscv_emulate_ror(uint32_t rs1, uint32_t rs2) {
uint32_t shamt = rs2 & 0x1f;
uint32_t tmp_a = rs1 >> shamt;
uint32_t tmp_b = rs1 << (32-shamt);
return tmp_a | tmp_b;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation REV8 (byte swap) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return Operand 1 byte swapped.
**************************************************************************/
uint32_t riscv_emulate_rev8(uint32_t rs1) {
uint32_t tmp_a = (rs1 & 0x000000ffUL) << 24;
uint32_t tmp_b = (rs1 & 0x0000ff00UL) << 8;
uint32_t tmp_c = (rs1 & 0x00ff0000UL) >> 8;
uint32_t tmp_d = (rs1 & 0xff000000UL) >> 24;
return tmp_a | tmp_b | tmp_c | tmp_d;
}
/**********************************************************************//**
* Intrinsic: Bit manipulation ORCB (or-combine bytes) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @return OR-combined bytes of operand 1.
**************************************************************************/
uint32_t riscv_emulate_orcb(uint32_t rs1) {
uint32_t tmp = 0;
if (rs1 & 0x000000ffUL) {
tmp |= 0x000000ffUL;
}
if (rs1 & 0x0000ff00UL) {
tmp |= 0x0000ff00UL;
}
if (rs1 & 0x00ff0000UL) {
tmp |= 0x00ff0000UL;
}
if (rs1 & 0xff000000UL) {
tmp |= 0xff000000UL;
}
return tmp;
}
// ================================================================================================
// Zba - Address generation instructions
// ================================================================================================
/**********************************************************************//**
* Intrinsic: Address generation instructions SH1ADD (add with logical-1-shift) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 2 + (Operand 1 << 1)
**************************************************************************/
uint32_t riscv_emulate_sh1add(uint32_t rs1, uint32_t rs2) {
return rs2 + (rs1 << 1);
}
/**********************************************************************//**
* Intrinsic: Address generation instructions SH2ADD (add with logical-2-shift) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 2 + (Operand 1 << 2)
**************************************************************************/
uint32_t riscv_emulate_sh2add(uint32_t rs1, uint32_t rs2) {
return rs2 + (rs1 << 2);
}
/**********************************************************************//**
* Intrinsic: Address generation instructions SH3ADD (add with logical-3-shift) [emulation]
*
* @param[in] rs1 Source operand 1 (a0).
* @param[in] rs2 Source operand 1 (a0).
* @return Operand 2 + (Operand 1 << 3)
**************************************************************************/
uint32_t riscv_emulate_sh3add(uint32_t rs1, uint32_t rs2) {
return rs2 + (rs1 << 3);
}
#endif // neorv32_b_extension_intrinsics_h